
Compilelt!
The XCMD Development System

The XCMD Development System

User Manual

For Technical Support Call

510-943-7667
Monday-Friday, 9 am - 5 pm Pacific time

Helzer Software

Compilelt! User Manual ©1990-94 Heizer Software.
All Rights Reserved.

Rev. 5/95

Copyright Notice

You are permitted, even encouraged, to make one backup copy of the
enclosed programs. Beyond that is piracy and illegal.

The software (computer programs) you purchased are copyrighted by the
author with all rights reserved. Under the copyright laws, the programs may
not be copied, in whole or part, without the written consent of the copyright
holder, except in the normal use of the software or to make a backup copy.
This exception does not allow copies to be made for others, whether or not
sold, but the material purchased (together with all backup copies) may be
sold, given, or loaned to another party. Under the law, copying includes
translating into another language or format. You may use the software on
any computer owned by you, but extra copies cannot be made for this
purpose. If you have several computers requiring the use of this software, we
are prepared to discuss a multi-use or site license with you.

Compilelt! ©1989-1994 Tom Pittman. All Rights Reserved.
Debuglt! ©1991-1994 Tom Pittman. All Rights Reserved.

Compilelt! User Manual ©1990-94 Heizer Software. All Rights Reserved. No
part of this document and the software product that it documents may be
photocopied, reproduced, or translated to another language without the
express, written consent of the copyright holders.

The information contained in this document is subject to change without
notice. Heizer Software makes no warranty of any kind with regard to this
written material. Heizer Software shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual.

Compilelt! and Debuglt! are trademarks of Heizer Software. HyperTalk,
HyperCard, Macintosh, Inside Macintosh, SANE, MPW, MacsBug, and
Stack Ware are trademarks or registered trademarks of Apple Computer, Inc.
SuperCard and Super Talk are registered trademarks of Silicon Beach Software,
Inc. TMON is a registered trademark of Icom Simulations, Inc. America
Online is a registered trademark of Quantum Computer Corp. Compuserve
is a registered trademark of Compuserve, Inc. All other brand or product
names are trademarks or registered trademarks of their respective holders.

CREDITS

Project Team

Tom Pittman Developer

Alan Pabst Product Manager

Gerald Schmalzried Software Engineer

Steve Michel Documentation Review

Ray Heizer Publisher

Acknowledgements

Extra special thanks to: Mark Thowe, Jerry Daniels, Andrew Meit, and Bryan
McCormick for suggestions, killer beta testing, and encouragement. Also to
Steve Michel for writing the Compilelt! 1.5 manual which served as a basis for
this manual.

Thanks also to all our beta testers, especially: J.P. Adams, James Beldock, Brian
Benison, Kevin Calhoun, Jack Carr, Peter Cleaveland, Jeff Close, Keith
DeLong, Brad Doster, Danny Goodman, Tom Gruman, Mark Hanrek, David
Johnson, Greg Kearney, John Kindschi, Binky Melnik, John Miskimins, Scott
Neufeld, Paul Pearson, George Pytlik, Dan Shafer, David Smith, Robertson
Reed Smith, Gary Stanoulis, Michel Swain, David Veeneman, Christopher
Watson, Dean Wette, Robert Williamson, Roger Wood.

And also, thanks to our customers. Your suggestions and support are greatly
appreciated.

3

4

TABLE OF CONTENTS

CHAPTER 1 INTRoouCTioN .. 9

What Is Compilelt! .. 10
Four Reasons for Using Compilelt! ... 10
How to Use This Manual .. 10
What Is a Compiler? .. 11
What Are Externals? .. 12
Who Should Use Compilelt! ... 13
What Compilelt! Does and Does Not Do 13

CHAPTER 2 CoMPILElT! BASICS ... 15

Quick Start Guide .. 15
A Short Guided Tour ... 16

Options ... 19
Editing Scripts .. 20
Compiling .. 20
Indicators ... 20
Dialogs ... 21
Installing into Another Stack .. 22

Background Operation ... 22

CHAPTER 3 UNDERSTANDING CoMPILElT! .. 25

Limitations of Compilelt! ... 25
Mathematics .. 25
Accessing Data in HyperCard Fields .. 26

Data Types .. 26
Boolean .. 28
Integer .. 28
SANE .. 28
String .. 29
Record .. 29

Types of Code Produced by Compilelt! ... 32
Native Inline Code ... 32
Library Code ... 33
Callbacks ... 34
Purging Your Scripts of Text Callbacks ; 36

Using ROM Toolbox Routines .. 40
Procedures and Functions .. 41

5

Debugging .. 42
Debuglt! ... 42
Invoking Debuglt! .. 42
The Debuglt! Window ... 45
The Source Code Listing ... 45
The Variable Monitor .. 47
The Controls .. 49
Some Things You Should Know about Debuglt! 51
Distributing Externals with Debuglt! Attached 53

Analysis .. 53

CHAPTER 4 THE SYMBOL TABLE .. 57

Compilelt! Names for Toolbox Access ... 60
Useful ToolBox Commands and Functions 61
ToolBox Variables and Fields .. 61
High-Level File Manager Routines ... 62
HyperCard 2.0 Names .. 62
SuperCard Commands and CallBacks ... 62
Color QuickDraw Commands and Functions 63
Custom Symbol Edit ... 63

K Constant ... 63
V ROM Global Variable .. 64
R Record Field .. 64
XExtemal (XCMD/XFCN) ... 64
H Text Callback .. 66
* Binary Callback .. 66
$ Raw Inline Code .. 67

CHAPTER 5 GEITING TO l<Now THE TooLBox 69

Bridging The Gap to Inside Macintosh ... 69
Safe Pointers for Faster Strings .. 75

Pointers and Handles .. 79
The Times ~ ... 82
Handle Chunks .. 82
Pointers and Handles inside the Macintosh 85
Inside Mac Data Structures ... 86
More About String Handles ... 90
Who Owns This Handle .. 95
Toolbox Calls with Text .. 99
Shared Variables ... 100
Array Notation ... 102

6

CHAPTER 6 CREATING xWINDOIDS ... 105

What Else You Should Know about the XCMD Interface 109

APPENDIX A CoMPILElT! AND 0rnER .APPLICATIONS •••••.•.................. 117

SuperCard .. 118

APPENDIX B SUPERCARD AND CoMPILEIT! •••.••....•.••.••••.•.•..•...••.•.....•.• 119

APPENDIX C COMPILED VS. UNCOMPILED HYPERTALK .•••••........•..•..•.• 123

APPENDIX D ERROR MESSAGES •..••..•.•.••.•••..•.•••••........•.•.•••••••.•••••••••••• 129

APPENDIX E COMPILEIT! VOCABULARY •••...•••.•.•..••••••........•..••......•..••.• 143

Supported HyperTalk Vocabulary ... 143
Unsupported HyperTalk Vocabulary .. 145

APPENDIX F SUGGESTED READING .•.••.•••....••..•.••.•••.•••••••••••.......•.......•. 147

APPENDIX G MEMORY REQUIREMENTS •·•••··••·•••••·•··•······•••••••••·••••••••••• 149

APPENDIX H UPGRADING TO CoMPILEIT! 2.x •..••••..••.•..•..•.•..............•• 151

APPENDIX I WHERE TO FIND MoRE INFORMATION ON CoMPILEIT! .•... 153
Online Services ... 153
User Groups .. 153
Compilelt! Professional Extensions ... 153
About Updates ... 154

APPENDIX J TIPS FOR CREATINGUSEFUL EXTERNALS 155

APPENDIX K INLINE MACHINE-LANGUAGE CODE ···••·····••••••••·•••·•••••·· 159

APPENDIX L INsmE CoMPILEIT! ..•••..•....••......•.•••••.....•.•.•....••....••......•• 161

Inside the Compilelt!-Compiled External.. 161
Compiled HyperTalk Code :: 162

Inside the Compiler .. 165

APPENDIX M THE HYPERCARD 2.x XCMD INTERFACE ••.••••.•..•••••••••. 169

HyperCard Callbacks ... 171
External Window Events .. 183

HyperCard Data Structures for Externals 188

INDEX•...........•............•..............•............•...•••.•..•.•.•..•.•. 191

7

8

INTRODUCTION

Compileltf is the first true compiler for HyperTalk, the programming lan
guage for non-programmers on the Apple Macintosh. Before Compileltf,
HyperTalk scripts were constrained to run slowly in HyperCard - with no
protection from
prying eyes! The
only alternative was
to abandon the ease
and comfort of
HyperTalk for a
conventional lan
guage such as C or
Pascal. Compileltf
makes available the
power and speed of
these languages,
without requiring
that you learn a new
language and new
programming
environment.

Compileltf translates the HyperTalk language into 68000 machine language,
and packages the result as a HyperCard external command (XCMD) or
function (XFCN) which can then be used from any HyperCard script.

Compileltf also provides many useful extensions to the HyperTalk language
which will give you access to features of the Macintosh far beyond what
HyperCard alone provides.

What the Package Contains

Your Compileltl package contains:
• This manual
• The stack Compileltf
• Demostack
• Batch Compiling Stack
• A folder of optional symbol tables

9

10

What Is Compile/ti

Ibis section gives you some background as to how Compileltf works. If you
know what externals are and what they do, you can skip this section, and go
directly to Chapter 2 Compilelt! Basics, which will take you through the process
of compiling a simple script.

Compileltf is a tool that allows you to create external commands (XCMDs)
and functions (XFCNs) using HyperTalk. Before Compileltf, to create these
externals, you had to use a language such as C or Pascal.

Four Reasons for Using Compile/ti

• Expand the capabilities of your HyperCard scripts. Use Compileltf and
the ROM Toolbox extensions to add new capabilities to HyperCard and
similar products.

• Increase the speed of routines written in HyperTalk. Generally, transform
ing scripts into externals will give you significant speed enhancements.

• Protect sensitive program code from prying eyes. HyperCard is "open,"
meaning that others can read your scripts and copy them. Compiled code
is rtot open to this kind of use.

• Learn Macintosh programming. If you are learning how to program the
Macintosh, Compilelt/ can serve as an entry point - allowing you to
easily explore the ROM Toolbox.

How to Use This Manual

Users new to Compileltf should read Chapters 1-3 of this manual to gain an
understanding of the product and what can reasonably be expected from it.
Chapter 5 will introduce you to the Toolbox once you are comfortable with the
product.

Experienced Compileltf users should scan Chapters 4, 5 and 6 and the appen
dices to learn what has changed.

Users new to Compileltf but experienced with Pascal or C will find the
information in Chapter 5 invaluable.

Professional programmers will find information of interest to them in the

appendices, in particular, the appendices INLINE Code and Inside Compilelt!
The section Creating Custom Symbols in Chapter 4 may also be of interest.

What Is a Compiler?

A compiler is a program that translates another computer program from a
high-level, easy-to-read language, such as HyperTalk or Pascal, into the binary
numbers that computers understand directly. The "brain" of every Macintosh
computer is a powerful processor, the Motorola MC68000 (or one of its big
brothers, the MC68020 or MC68030), which understands a complex machine
language. Few people understand this machine language, and fewer still are
able or willing to write programs in machine language.

Instead, programmers write their programs in high-level, text-based program
ming languages. The "lowest level" of the programming language is assembly
language. Assembly language is very close to machine language, but is easier
to work with, since it is text, and not number based. Portions of many pro
grams (such as HyperCard) are written in assembly language, since it gives
the programmer a great deal of control over what is happening in the machine
and allows for greater fine-tuning.

C and Pascal are examples of high-level languages. These languages are more
abstract than assembly language, in that you can use any of many commands
the language compiler understands, without having to understand the ma
chine or the assembly instructions carried out when that command is ex
ecuted. Most of these languages are compiled. That is, after the program is
written with a text editor, the compiler then scans the program, translating the
abstract instructions into specific machine instructions.

Some other programming and macro languages are interpreted. Examples of
these languages include the macro languages of such programs as Excel,
WingZ, 4th Dimension, and HyperCard. Programs in these languages are
actually executed by the "mother" program, and cannot be used outside that
program. These languages are very easy to use: they include commands and
syntaxes that are natural, and refer to objects (such as records, cells, fields,
etc.) that have concrete representations on the screen to the user of the pro
gram.

Originally, HyperCard had to interpret each statement in a script as it encoun
tered it, figuring out what steps were necessary to execute that line. All this
interpreting took time, as HyperCard scanned each line to figure out what had

11

12

to be done.

HyperCard 2.0 replaced its interpreter with an incremental compiler which
offers better performance under certain circumstances but still requires some
"on-the-fly" interpretation.

Compileltl scans your scripts, translating each command and function into its
machine representation, and creates an external command or function of it.
This external, being in machine language, is executed much, much faster by
HyperCard.

Another benefit of using Compileltl to create externals is that before you begin
to compile your external, you can test it just as you test any HyperCard
handler.

What Are Externals?

All this is made possible by the decision of HyperCard's creators to include a
feature for extending HyperTalk to include unplanned commands and
functions, or to repair HyperTalk problems by replacing existing commands
and functions with specially-coded routines in machine language. This
capability is the source of unique power in HyperCard, and the ability to use
externals has been adopted by developers of many different types of pro
grams, from communications programs to databases and spreadsheets. It
allows programmers to extend pre-written software in ways that might not
have been foreseen by the software's original creators.

It was expected that these external commands (XCMDs) and functions (XFCNs)
would be programmed by skilled programmers, using assembly language or
C or Pascal. To a large extent this has been the case, but it is unnecessarily
restrictive for less skilled users of HyperCard. One of the most significant
aspects of HyperTalk is the degree of power it has given to those not skilled or
educated in other programming languages. Compileltl completes this em
powerment of the individual, by allowing you to use HyperTalk to create your
externals.

An external command or function is much like a handler written in HyperTalk
or a command or function built into HyperCard. When HyperCard is execut
ing a script, if it encounters a command or function for which there is no
handler, it looks in the list of resources that are part of the stack (or of the
Home stack) to see if there is an external by that name. If so, the external is
executed as if it were a standard HyperTalk handler or a built-in command. (If

an external has the same name as a built-in HyperTalk command or function,
then that external takes precedence over the built-in command or function.)

Using externals, you can create the means of making HyperCard do virtually
anything that the 68000 processor or Macintosh ROMs can do, within certain
limits imposed by the HyperCard environment. Examples include faster and
more versatile ways of searching for individual characters or sets of characters
in a string of text, creating new types of drawing tools, and bringing to
HyperCard many abilities built into the Macintosh ROM.

Your externals, like the handlers you write in HyperTalk, can take parameters
(up to the limit of 16 imposed by HyperCard), and though Apple has not
released the internal format of HyperCard, your externals can also access data
stored in HyperCard fields or in global variables. Messages can also be sent to
other handlers in stack and card scripts by a powerful mechanism known as a
callback. Thus, when writing externals, you have the best of both worlds: the
ability to write protected, fast code in machine language, and the ease of use of
HyperTalk.

Who Should Use Compile/ti

Compileltl is a development tool for experienced HyperTalk scripters. You
should be familiar with HyperTalk handlers, messages, and properties before
using Compilelt! Suggested Reading in the Appendices of this manual is a good
place to start if you are a beginning scripter.

If you intend to use routines from the Macintosh ROM Toolbox in your
compiled scripts, you should be familiar with Inside Macintosh. This manual
does not provide information on programming the ROM; it only tells you how
to use Toolbox routines from your compiled scripts. Again, Suggested Reading
lists some books in addition to Inside Macintosh that can help you.

What Compile/ti Does and. Does Not Do

Compileltl allows you to write handlers and functions using HyperTalk,
instead of complex languages such as C or Pascal. Compilelt/ then translates
those HyperTalk-based handlers or functions into 68000 instructions for
quicker execution by HyperCard.

13

14

Many first-time users of Compileltf take some existing scripts, paste them into
Compileltf and go. Often the resulting external works fine. In many cases,
however, it is not the best way to go.

For example, most handlers in buttons react to the mouseUp message that is
sent to a button when you release the mouse button over it. You might be
tempted to compile such a script for faster processing. However, you should
keep in mind that Compileltf generates an external with the name of the
handler you compiled - in this case, it creates an XCMD with the name
mouseUp. Pasting this XCMD into a stack means that any time you release the
mouse button on any object (including a card) that does not contain a handler
for this message the mouseUp XCMD will be triggered. This is almost cer
tainly something you do not want to do. Instead, you should break out the
tasks performed by the mouseUp handler into a separate handler, and then
use the mouseUp message to call that handler. Compile the separate handler.

Not every script can be made faster simply by compiling it. Scripts that deal
primarily with HyperCard structures (buttons, fields, cards, etc.) will not go
much faster. Anytime you do something that requires access to the HyperCard
file format, you will not realize a speed increase. Some examples of actions
that access the HyperCard file format are getting and setting properties,
navigating through a stack, sorting cards, and finding.

COMPILE/Tl BASICS

This chapter provides a brief overview of Compilelt! for both the beginner
and the advanced script writer. It is designed to rapidly show you how
Compilelt! works without going into detail. Going through this hands-on
section will help you relate to the concepts covered in the next chapter,
Understanding Compilelt!

Quick Start Guide

It is important to understand that Compilelt! requires some knowledge of the
HyperTalk language. If you are new to HyperTalk, you should study one or
more of the books listed in the Suggested Reading appendix of this manual
before proceeding.

The following are the basic steps you will use to compile a script:

1. Make sure you have a backup copy of the Compilelt! disk stored in a safe
place.

2. Copy Compilelt! onto your hard disk.

3. Start Compilelt! by double-clicking on its icon from the Finder. (Be sure
HyperCard and the Home stack are on your hard disk as well.) The main
screen for Compilelt! will appear.

4. Click on the Enter New Script button. The Script card will appear.

5. Type or paste your script into the large text field and click the Compile It
button.

6. A dialog box will appear listing your HyperCard stacks. Choose the stack
where you want your compiled script installed and click Open.
Compilelt! will compile your script; if it takes more than a few seconds,
you will hear a beep when Compilelt! is finished. As your script is being
compiled, you can monitor Compilelt!'s progress by watching the gauge
at the top of the Script card.

7. When Compilelt! is finished, you will find yourself in the stack you
selected at the start of the compile. If you created an XCMD, its name will
appear in the message box. If you created an XFCN, the word put fol
lowed by the XFCN's name and an open parenthesis will appear in the

15

16

message box. Type any required parameters, followed by a close paren
thesis (if you compiled an XFCN), and then press the Return key to test
your newly compiled script. If your command is specific to a card or
background, go to that location first before pressing the Return key.

8. If you get the wrong result, go back to your original source script, correct
any errors and compile the script again. Later in this manual, we will
discuss Debuglt!, which you will find invaluable for locating errors in
your scripts.

A Short Guided Tour

Compileltl is a HyperCard stack. To use it, just open it from within Hyper
Card, or double-click its icon from the Finder. Always work from a copy of
Compileltl - never on the master copy that you purchased. If you haven't
done so already, make a copy of Compilelt! now and work from the copy.
Store the master in a safe place. Similarly, you should first test compiled
scripts on a copy of their destination stack.

You can compile any size script from just one handler up to an entire script
from a button, field, card, background or stack. However, only the first
handler in a compiled script can receive messages from HyperCard or other
scripts. Just paste (or type) your script into the Compileltt script card, click on
the Compile It button, and wait for the script to be compiled - or as happens
to most of us, discover you have a programming error, correct it, and try
again!

There are extensive help "pop-ups" built into the Compileltf stack (Option
click any button for help). Under System 7.0, Balloon Help is also available. A
brief guide to Compilelt!'s operation is also included in the stack. There are
limits to what Compileltt can compile which are documented in this manual
and/ or the on-line documentation. This manual also shows how to compile
references to the Macintosh Toolbox ROM routines. The examples in the
Compileltt stack are also instructive.

You will also note that Compileltl adds a new menu to the standard Hyper
Card menu bar. This menu lets you quickly move between Compilelt!'s
various cards.

It is probably easiest to see how Compileltf works by following the develop
ment of a simple XFCN from start to finish. We will build an XFCN to calcu
late the integer part of the square root of an integer by subtracting successive

odd integers from it. This is not a fast algorithm, so it is not a very useful
XFCN, but its very slowness will help get some perspective on what compila
tion will do for our scripts.

On the Compileltl distribution disk is a small stack called "Demo." It has just
one card and no buttons. The card script has just one handler function

squareroot as follows:

-- calculate {.../y) by subtra_cting odd numbers

function squareroot x
put x into y

put 0 into ans

put 1 into oddint

repeat while y~O

subtract oddint from y

add 1 to ans

add 2 to oddint
end repeat

return ans-1

end squareroot

The first thing to do with any script to be compiled is to test it in HyperCard,
if that is at all possible. Open the stack, show the message box (Command-M),
and type:

put squareroot(lOOO)

After a few seconds the message box will be changed to 31, which is the
correct answer (as an integer). If it were not, this would be the time and place
to debug the script. Despite its limitations, the HyperCard interpreter is much
more friendly than any compiler can be. Try a few more numbers, just to
convince yourself that it works.

Now open up the card script (by choosing Card Info ... from the "Objects"
menu and then clicking the Script button) and copy the script to the clipboard.
If there is no "Objects" menu, you may need to type into the message box set

the UserLevel to 5 in order to gain access to HyperCard's scripting level.
Next, open Compileltl Click on the Paste from Clipboard button. It will take
you to the script card of Compileltl If you have any last-minute changes to
make to the script before compiling it, now is the time to make them. We will
compile it unchanged.

17

18

Click on the Compile It button. Compileltt will ask you to specify a stack to
install the XFCN in; choose the Demo stack. It will take less than a minute to
compile this script. You can watch the progress in the meter at the top of the
card. You can also see what phase the compiler is in at the top of the card.
Compilelt! may beep at you when it finishes.

The message box will look like this:

put squareroot(

Type 1 o o o) and press return.

You will not detect any difference from the first time we tried this (before
compiling). This is because there is no difference: the original card script is
handling the function call, and the XFCN never sees it. So open up the card
script and change the name of the handler, or comment it out, or delete it
entirely, then try again from the message box.

You will notice that the new function is so much faster than the original script
that you no longer notice any time delay. You actually have to ask for the
square root of six digits or more to see any delay at all! If you recompile this
script with Always Use SANE unchecked, you'll notice that it is even faster. It
takes eight digits or more before a delay is noticed. If you are an expert Pascal
or assembly programmer, you may be able to squeeze a little more speed out
of this XFCN than what you have now, but you would need a stopwatch to
notice it.

Notice the second line of the original script:

put x into y

Although this does not seem to do anything (except perhaps give the compiler
a little extra work to do), it has the important effect of separating the character
string parameter (x) from the local variable (y) used for arithmetic. Doing so
results in a much faster XFCN. Parameters to an external are always passed as
character strings. Each time your script refers to them in a math expression,
extra code has to be generated by Compilelt! to convert them to numbers.
Using the above technique results in faster, more efficient, compiled code for
parameters that contain numbers.

If you make it a practice to develop your XCMDs in a single stack where they
are easily tested (such as the Demo stack we used), then you will need another

tool to copy the finished XCMDs into the stacks where they will be used. A
handy stack called "Resource Mover" is included with Compilelt! for this
purpose.

Options

At Compilelt!'s main card, you can set three options that affect the way
Compileltl works. Other options are available by using the Other Options ...
button, and these will be discussed later in this manual.

HyperCard 2

1his option allows you to use certain symbols (a symbol is any word that
has meaning to Compileltl, such as commands, functions, properties, etc.)
which, when compiled, result in compiled code that requires HyperCard
2.0 or above. Currently, only Exit to HyperCard requires that this option
be on. Future versions of Compileltl may enable additional features
through this option that will be specific to HyperCard.

Debugltl

This option causes Compileltl to attach special code to your compiled
external that makes it easier to debug your external. This option is dis
cussed in more detail in Chapter 3 of this manual in the section Using
Debuglt! Leave this box unchecked for now.

Always Use SANE

This option causes Compileltl to use Apple's SANE (Standard Apple
Numeric Environment} routines to perform all calculations, and is dis
cussed later in this manual.

19

20

Editing Scripts

Compileltl works on scripts stored in a field on the script card. This means
that you can use standard Macintosh editing techniques to put your scripts
onto that card. You can paste them from fields or scripts in other stacks, and
once a script has been entered into the field, you can use standard Macintosh
techniques for editing it: selecting text, then cutting, copying, and pasting it.
The four buttons on Compilelt!'s first card are provided to make it easier for
you to do many of these things.

We recommend that you create a separate stack to contain all your externals.
Such a stack gives you a good place to keep both your compiled and
uncornpiled code, and make notes about any details involved in using your
external.

Compiling

While Compileltl is running, you can watch the process to see how much
progress it has made on your script. Compileltl makes two passes through the
script, and these passes are described below.

You can also change the font and size used in the field that contains your
script on Compileltl's script card, by selecting the field, and using the stan
dard commands from HyperCard's menu bar.

Indicators

There are several indicators to help you gauge current progress while
Compileltl is compiling. Some of the terms in the discussion below may be
new to you; in any case, you don't really need to understand what is going on
in each step. This material is provided for informational purposes only.

-
I The purpose of this indicator is to monitor ap-

llilmlm111--m111m111lllllll proximate compilation progress, so you can see at
a glance how much of the compile is remaining.

I
This indicator shows the number of bytes of script I Byte 3 411! that have been scanned during Pass 1 and Pass 2.

- After Pass 2, during the "Add Library" phase, it gives
the current number of bytes in the whole XCMD. This number may be more or
less than the number of script bytes, depending on the exact script.

Compileltl puts up a watch cursor with moving hands. The minute hand
merely shows that something is happening, but the hour hand shows the
compilation phase. This is also reported in the field at the top of the script
card.

Prepare data The global variables used in compiling are initialized,
and the compiler is loaded into memory.

0 Pass 1
The script to be compiled is scanned to determine the types of
variables and the names of all the handlers in it. Syntax errors
are detected in this pass also.

0 Prepare pass 2

The code generator is initialized, and any string
constants are converted to binary code. Compileltl
watches for duplications so that space will not be
wasted on them.

G Pass 2: Gen code
The script to be compiled is scanned again, and
binary code is generated for all the commands
and expressions. This is usually the longest part
of the compile.

8 Add Library

i?> Link functions

G Build resource

Dialogs

Compileltl has a library of functions to aid in evaluating
chunk expressions and other operations that do not
translate easily to machine language. Only the library
routines that are actually used are added to an XCMD
being compiled.

Handlers and library routines are linked to the
commands where they are called.

Finally, the binary code is converted to a resource
and added to the target stack.

There are two dialogs which require user intervention while running
Compileltl

One dialog is normally seen each time a compile is started. It asks you to select
the stack where the XCMD is to be installed, using the standard file dialog
box.

21

22

When Compileltf aborts compilation on a programming error, it leaves a
message in the script field (see Appendix 0, Error Messages), then puts up a
dialog to report the error. In the dialog, the next symbol to be scanned from
the script is mentioned in quotes.

Installing into Another Stack

When Compileltf starts to compile your external, you will be asked to locate
the stack into which you want the external to be installed. You can install your
new external into any stack except for Home, Compileltf itself, any stack that
is "in-use," or any other currently open stack.

If you do not wish to be asked each time for the name of a stack, you can go to
the Other Options card (by clicking the button of that name on the first card,
or selecting Options from the Compileltf menu), and set the name of the stack
into which you want all your externals to be installed. In the lower left comer
of that card, you will see a field labelled Always Install in Stack ... which is
empty. Clicking on this field summons a standard Open File dialog box which
lets you locate a stack. The name of that stack will be recorded in the field, and
all new externals will be installed in that stack with no intervention from you.

We recommend that you maintain a library stack of all the new externals you
create, as a handy place to store your original code, along with notes about
using the external. However, this should not be the stack into which you
always install your new external. Externals with errors in them-especially
those that use the ROM routines - can wreak havoc on your stacks, perhaps
destroying them. Instead, create a stack you use for testing purposes, and
install all new externals into that stack. Use Resource Mover to transfer
completed externals to your library stack.

Background Operation

Compileltf can compile in the background under all versions of HyperCard. If
you are compiling a very large script under HyperCard 2.0 or later, you may
find it convenient to "switch-out" to another application to work on some
thing else. Compileltf will notify you when it finishes by flashing a small stack
icon over the Apple menu, unless you have set up a batch compile stack to
compile multiple scripts.

Even if you are not running under Multifinder or System 7.0, or are using an
earlier version of HyperCard, you can use desk accessories while you compile.

Compileltl is intelligent about how it works in the background. It will notice if
nothing is happening in the foreground and run at full speed during those
times (for instance, when you are reading a file in a word processor or away
from your desk for a bit).

23

24

UNDERSTANDING COMPILE/Tl

This first half of this chapter discusses data types, limitations, the types of
code that Compileltl produces, and text callbacks. The second half introduces
Debuglt! and the Analysis card, which are used to find programming errors.

Limitations of Compile/ti

Mathematics

SANE (Standard Apple Numerics Environment) is a set of routines built into
every Macintosh. SANE ensures that calculations involving "real" numbers
(very large or small numbers, or numbers with fractional parts) always give
the same level of accuracy regardless of what application or machine the
calculation is performed in/ on (rounding errors, while impossible to elimi
nate entirely, are ensured to be consistent). However, SANE is much slower
than integer arithmetic (calculations involving NO decimal portion) and is
unnessary for such calculations (accuracy is a constant). HyperCard almost
always uses SANE even when it is unnecessary, while Compileltl gives you a
little control in the decision.

On Compileltl's first card is a button labeled Always Use SANE. If you have
checked this button, then Compileltl will use Apple's SANE for almost all
math operations. The exceptions are cases where Compileltl knows that
integers are used: such things as indices in Repeat loops and ROM calls that
require integer input. SANE is slower than integer mathematics, so you might
want to leave this button unchecked. Don't worry, though: if Compileltl sees
that you are working with a floating point number it will use SANE automati
cally regardless of the setting of this button. The purpose of this button is to
safely enable you to get the fastest possible code - if this option is off,
Compileltl will use faster integer math when in doubt; if on, slower SANE
math will be used when Compileltl is in doubt.

If you are working with SANE unchecked there are a few situations where
Compileltl 1J1ay choose the wrong data type. For example, consider the
following line of HyperTalk:

add (item 2 of x) to item 4 of y

Compileltl has no idea what type of data is in the items at compile time. If the

25

26

SANE checkbox is unchecked, the integer data type will be chosen. If your
script contains HyperTalk similar to the above example and you still don't
want to compile with Always Use SANE checked, you can ensure that the
SANE data type is chosen by using the exponential (A) operator as in:

add (item 2 of x)Al to item 4 of y

Using Al does not result in additional code, it is simply a hint to Compileltl
to use the SANE data type.

In general, you won't need to worry about the details of using SANE: when
Compileltl encounters an operation that involves a floating point number (i.e.,
x/y or x+3. 345), the SANE routines are used automatically even if the
Always Use SANE box is unchecked.

Accessing Data in HyperCard Fields

Your compiled scripts can refer to data in parameters, local variables, global
variables, and data in fields on the current card only. From within your exter
nal, HyperCard will not let you refer to data in fields on cards other than the
current card. This means that you cannot use a command like: get 1 ine 1

of field 5 of card 10. A work-around is to use the go command to go to
other cards first as in:

go to card 10

get line 1 of field 5

Another work-around lets HyperCard do the work for you using the do
command and the value function, as in:

do •get line 1 of field 5 of card 10"

get the value of "it"

You may also want to read Compiled vs. Uncompiled HyperTalk in the Appendi
ces, which discusses some of the subtleties of compiled HyperTalk.

Data Types

One of the things that makes programming in HyperTalk easy and Pascal
hard is that HyperTalk hides all the different machine representations of data
from the programmer. Everything in HyperTalk is a string of characters. The

term ''hides" is used because the arithmetic is not done on strings of charac
ters inside the machine. You just aren't aware of all the conversions going on
all the time. The conversions are necessary, but you don't have to think about
them; they are automatic.

Once in a while HyperCard shows its hand a little bit. As an example, type
into the message box:

put 20000000 I 100
put 20000000 div 100

put 2000000000000000 I 100000
put 2000000000000000 div 100000

Since the division is exact (no remainder for div to discard), all four lines
should get the same result, but HyperCard 2.0 tells you that the result of the
last statement is -2147483648 and versions of HyperCard less than 2.0 tell you
that "2000000000000000 is not the right type for div." What has happened is
that HyperCard is doing its arithmetic using integers as much as possible,
since these are the fastest arithmetic in the 68000, using machine language
hardware. When HyperCard notices that the numbers exceed its integer size,
or if fractions are possibly involved (as in the case of"/" division), it switches
over to SANE floating point. SANE is executed in hardware on the Mac II, and
other processors with a 68881 or 68882 floating point co-processor, but in a
standard Macintosh it is emulated in software, which is rather slow.

An integer like 20000000 fits into 32 bits easily, but 2000000000000000 does
not.

Why this emphasis on numeric data types? Just this: while HyperCard may
have a couple of surprises for the unwary programmer, most of them can be
caught at run-time by examining the data and choosing the most appropriate
data type. Compiled HyperTalk has a lot more surprises.

Compileltl attempts to choose an appropriate data type for your variables
when it compiles the script, without looking at the data (since, of course, no
data is available yet), by seeing to what use the variables are put. It is almost
impossible to tell ahead of time whether decimals or fractions are involved, so
the safest code would use SANE all the time; this is generally what happens if
you have the Always Use SANE button on Compileltl's first card checked.
This is slow for most applications where integer arithmetic is perfectly ad
equate; so if your external is using integer math only, leave this button un
checked.

27

28

Another data type problem comes from odd (but perfectly legal) expressions
like:

char 3 to 5 of (1234*9876) + 7

(which has the value 193). The sub-expression inside the parentheses is an
integer multiplication. To this is applied a chunk expression evaluation to
extract the third, fourth, and fifth digits as a character string, which once again
is treated as an integer and added to 7. Compileltf will give the correct result
for this expression, but in the process it will be converting the integer product
to a character string to extract the three characters from it, then converting that
sub-string back to integer to add 7. All this conversion takes time - indeed, it
takes about as long as HyperCard would have taken, because HyperCard
must do the same kinds of conversions itself.

There are basically five data types that make sense in compiled HyperTalk.
These are all modelled in HyperCard as character strings, but for the best
performance, and for correct interface to the ROM Toolbox routines,
Compileltf uses the conventional 68000 representations for the five data types.
The five types are Boolean, integer, SANE, string, and record. Additional data
types are available when working with the Toolbox. The additional data types
are presented later in this manual.

Boolean

Boolean data has only two abstract values, true and false. These are modeled in
HyperCard as the character strings "true" and "false", but in normal 68000
code they are the two values of a single bit (1 or 0). Compileltl uses the single
bit representation, and converts to and from character strings as needed to
communicate with HyperCard.

Integer

All integer math is 32-bit (±2147483647).

SANE

All SANE math is 80-bit (±1.1£±4932).

String

Strings in HyperCard can be any number of characters, up to the total of
available memory. Fields are limited to about 30,000 characters, but variables
have no such limitation. Compilelt/ supports this data format fully.

In order to make the memory space used by string data available when the
strings are no longer in use, XCMDs compiled by Compilelt/ include a proce
dure called a garbage collector. This takes a little longer than a program where
the programmer knows exactly when a string is no longer in use and releases
its storage immediately. Pascal programmers are required to do this explicitly
in their XCMD. If they forget, memory slowly fills up with strings that are no
longer in use, and they have to quit HyperCard to get rid of them. With
Compilelt/ you don't have to worry about forgetting - or worse, disposing of
a string before you are finished with it (a sure bomb). However, if your XCMD
terminates abnormally with an error in a callback to HyperCard, there may be
undisposed of strings left. The best thing to do in such a case is to quit Hyper
Card as soon as practical, and restart.

The ROM Toolbox routines require strings in a different format than does
HyperCard. Sometimes called "P-strings" for historical reasons (they achieved
popularity with the UCSD P-System that was the predecessor of Apple
Pascal), these strings are limited to a maximum of 255 characters. With such a
limited size, they do not require garbage collection. Compilelt! is aware of the
differences between these two string formats, and makes appropriate conver
sions. However, whereas P-strings can have any characters in any position,
HyperCard strings cannot contain any null characters (a null marks the end of
the string). Although not normally a problem, Desk Accessory names returned
by various Toolbox routines all begin with a null, so the conversion makes
their names appear to be empty. The only way around this problem involves
the explicit use of P-string data types in shared variables or on the heap (see
Chapter 5 Getting to know the Toolbox), and writing a short handler to replace
the null with something else.

Record

Records in HyperCard are represented as variable-length lists of words, items,
and lines, packed into single strings. This is fairly easy for non-programmers
to understand, but it is difficult for programming languages to extract or
change components. Conventional programming languages use fixed-length
integers and P-strings, packed into a block of memory also of a fixed length.

29

30

The machine language to access such data structures is very efficient.

Most of the data formats in Inside Macintosh are defined as records in the
Pascal language. It is not really necessary to understand all of the Pascal
language to read these records; it is sufficient to recognize the keywords
record and end which act like brackets around all of the data contained in the
record (including possibly other, nested records). Any item inside the record is
accessed by attaching its name with a dot(".") to the record reference. Thus,
for example, with the record definition (from Inside Macintosh, I-202):

BitMap = record

baseAddr: Ptr;

rowBytes: integer;

bounds: Rect

end

If you have a pointer to a BitMap in the variable B, you can access the integer
value row Bytes by the Pascal equivalent of a chunk expression,
B@. rowBytes . This is read approximately as, "the rowBytes item of the
BitMap record pointed to by B."

A good Pascal compiler rigidly enforces correct data type management by the
programmer. This is mostly a protection against programming errors, and
results in better productivity than un-typed and weakly typed languages like
C and assembly. Because HyperTalk has no types at all in the language,
Compileltl can only make a best guess at appropriate data types, and auto
matically convert between the types as necessary.

In the case of Toolbox routines and HyperCard callbacks, the data types are
well-defined (as indeed they must be for Pascal programmers). Within the
compiled XCMD, types are assigned to local variables according to their
usage. If they are used in string operations, they will always default to a string
type as the safest. Otherwise, variables passed to integer Toolbox routine
parameters or used in integer arithmetic will likely be assigned the type
integer. Variables used in Boolean expressions will likely be assigned the type
Boolean, etc.

The special HyperTalk variable it gets reused for whatever is handy so often
that Compileltl will reassign its type every time you put a new value into it or
get a new value. This can lead to inconsistencies in the case of repeats or if
then-else commands. The following script has two such inconsistencies:

get true -- set the type of 'it' to boolean
repeat until it is empty
if whatever then get empty set type of 'it' to string
else get 5 -- set the type of 'it' to integer

end repeat -- the type of 'it' is now inconsistent

The "then" part of the if-then-else gets an empty string into it, setting its
type to string, but the "else" part gets the integer 5 (setting its type to
integer). If any use of it is to be made after the two branches rejoin, there is
no way for the compiled code to know which type is appropriate. This could
be resolved by changing the get 5 to get "5 ", so that the one-digit character
string • 5 • (type string) is stored in the variable it instead of the integer 5.

That will not invalidate any intermediate use of it such as for arithmetic,
since Compilelt! will make the necessary conversions automatically now that
the type is consistent through the if-then-else part of the loop.

However, there remains another inconsistency around the loop. The line
before the repeat command gets a Boolean value, but the if-then-else leaves a
string type in it, and the condition on the repeat is explicitly testing for a
string condition, namely, the empty string. The Boolean value is not a string,
but Compilelt! will convert it, probably yielding either the string "true" or
the string "false", depending on what HyperCard makes of the empty string
interpreted as a Boolean value. Neither of these two strings is empty, so the
loop will never terminate. Again, enclosing the word "true" in quotes will
yield a consistent string type all around the loop, and the test for empty will
then be valid and functional.

Other than watching for and avoiding this particular problem, you do not
need to be overly concerned about data types. A good rule of thumb is to use
local variables for all arithmetic and loop index (with-variable) operations,
and to avoid concatenation and chunk expressions on the same variables that
are used for arithmetic.

To avoid misunderstandings, you can "declare" variables to be of a certain
type. For example, if you are going to be using one particular variable to hold
integers only, you could put a line such as this:

add 0 to myVariable

somewhere in your script. That way, Compilelt! will know what kind of
variable it is. If a variable is used as a parameter to your external, you can
make sure Compilelt! knows what it is by first copying it into a local variable,

31

32

then adding 0 to it, as with these two lines:

put parameterl into myVariable
put myVariable + 0 into myVariable

Similarly, you can tell Compilelt! that a variable is to contain a floating point
number by using the line:

put myVariable~l into myVariable

In neither case do these statements add size or processing time to your exter
nal.

If you have a number that is a floating point number, and wish to convert it to
an integer for faster calculation (losing, of course, the fractional part of the
number in the process), you can use the Round or Trunc functions. Further
operations on variables containing the results of these functions will use 32-bit
integer math.

Types of Code Produced by Compilelt!

Compilelt! produces four different types of code, depending on the type of
source it is dealing with. Each of these four types of code yields a different
level of performance (i.e., speed) in your external. The four types of code are:
native inline code, library code, binary encoded callbacks, and text callbacks. As a
user of Compilelt!, you don't need to worry about these different kinds of
code, except that they do produce dramatically different levels of performance
in your externals.

Native lnline Code

Native Inline Code is the fastest. On a 68000-based Mac SE or Classic, this kind
of code runs at about 400,000 instructions per second, and it takes some 2-8
instructions to do a command or calculate a simple expression value in native
inline code. If your entire script compiled to native code, it would run 5,000 to
10,000 times faster than interpreted HyperCard. The following types of
operations generate native inline code:

• Integer addition, subtraction, multiplication, and compare

• Integer division or multiplication by a constant power of 2 (e.g., 32 or 512)

• Single character compare (excluding chunk expressions)

• The And, Or, and Not operators

• All forms of repeat, including Next Repeat, and Exit Repeat

• All forms of If, with or without Else

• Calling functions compiled in the same script

• Recursion (i.e., calling a function from within itself)

• Passing messages to local handlers (i.e., those compiled within the exter
nal)

• Exit or Return from a handler or function that uses no string variables

• Put number or integer expression into local or shared integer variable, or
conditional expression into Boolean variable

• Get integer or Boolean expression

• Array, pointer, and record notation (e.g., handle@@.integerType[x])

• NumToChar, CharToNum, Abs, Max or Min (with integer params),
ParamCount function

• The ROM Toolbox functions: BitAnd, BitOr, BitXor, Lo Word, HiWord

Library Code

Library Code also executes very fast. Because compiled Library code executes
hundreds of instructions for each command, it is not as fast as native inline
code. This is used for commands and expressions that do not convert directly
to native machine code, but are relatively simple to do with repeat loops in
specially coded routines, such as 32-bit integer division and string operations.
The repetitive part of the code will typically take about as long for the com
piled XCMD as for the HyperCard interpreter, but the interface is in native
inline code, eliminating the run-time analysis of what to calculate. Short
strings and arithmetic will tend to run somewhat faster than HyperCard, but
long strings may take about the same amount of time. Some commands and
expression operators depend on ROM Toolbox calls for part of the processing;
these are included here, since the timing for them is comparable to compiled
library code. The following kinds of operations produce Library Code:

33

34

• String/ number conversion

• SANE arithmetic

• String compare

• Integer division other than by a power of 2

• String concatenation

• Delete

• Chunk expressions

• Exit and Return from handler or function

• ROM Toolbox calls

• Put a string value into a local variable

• Put a string value into a chunk

• Get a string value

• Put, Get

• Length, Number (of chunks), Result, Param, Params, Average

• One-parameter HyperCard math functions: atan, average, cos, expl, exp2,
ln, lnl, log2, min, max, random, round, sin, sqrt, tan, and trunc

Callbacks

As we have explained, Compileltl works by translating HyperTalk commands
into their machine language equivalents, so that HyperCard can perform these
tasks much quicker. Compileltl includes in code or its symbol table machine
language counterparts for a large percentage of HyperTalk's commands.
However, Compilelt/ does not include machine language representations of all
of HyperCard's commands. Many of these are handled by a mechanism built
into HyperCard's external facility called the "text callback."

Callbacks were built into HyperCard to allow external routines to have
HyperCard do some of their work for them. Examples include getting text
from fields, executing commands such as Find, converting data into a form
that HyperCard can understand (i.e., text). Callbacks are very useful: since
Apple has not made the data structures that HyperCard maintains in RAM
and on disk public, there is no other mechanism for externals to get at Hyper
Card data.

However, callbacks take time. A text callback is generally sent to the current
card, from which it must make its way up the complete hierarchy of Hyper
Card message passing, then be executed in the same manner as a HyperCard
command or function. Furthermore, text callbacks must be translated into a
text message by the external before they can be sent to HyperCard, which
takes more time. Ideally, you will want to write your Compileltl externals so
that they include virtually no text callbacks. 1his is not always possible. 1his
section will help you understand what the various callbacks are and how to
identify them and remove them from your scripts so that your external is as
fast as possible.

There are two kinds of callbacks supported by HyperCard and by Compileltl
The first type, Binary encoded callbacks, are very fast, because the message
does not need to be converted to text. These callbacks include:

• Number and string conversion

• String search and compare operators (used for Offset or Contains)

• Global variable access (that is, changing a global variable with the Put
command, or referring to it in an expression)

• Field access on the current card (that is, Getting or Putting text into a field)

• The script abort operator (in HyperCard 2.0, used for Exit to HyperCard)

• Script access utilities in HyperCard 2.0.

The other kind of callback is the Text message. These callbacks are at least as
slow as the original command in HyperTalk, and because of the overhead of
having the external send the message to HyperCard, can actually be slower.

The following result in text callbacks:

• The Within operator

• Accessing properties

• Put, into the message box, or Put with no destination (message box
assumed)

• Reference to the It variable, after using the Convert, Ask, Answer, or Read
commands

35

36

• References to handlers, functions, and other externals not compiled with
your script (unless defined as an Inline call to another external with
Custom Symbol Edit)

• Commands, functions, and properties that Compilelt! does not know
about

Purging Your Scripts of Text Callbacks

1his section will show you how to identify callbacks in your scripts and
provide suggestions on how they might be eliminated. As discussed in the
Debugging section of this chapter, you can use the Analysis button on
Compileltl's Script card to help you see, once your script has been compiled,
what callbacks are used.

Here is an example of a very slow script, and some ideas for how to make it
faster:

on demoO
global x
repeat while the mouseloc is within the rect of card button 3

add item 6 of card field 3 to x

end repeat
end demoO

There are three text callbacks on the repeat line of this script. That means that
every time around the loop three messages are sent back to HyperCard to
interpret. At least one of these is never changing, so it can be moved out of the
loop for a significant improvement:

on demol
global x

put the rect of card button 3 into r3

repeat while the mouseloc is within r3

add item 6 of card field 3 to x

end repeat

end demol

Although convenient, the within operator is not very fast in compiled code
because it is sent back to HyperCard to be interpreted. You can write a short
function that will run much faster, if you convert the coordinates to integer
first:

on demo2
global x
put the re ct of card button 3 into r3
put item 1 of r3 + 0 into r3left
put item 2 of r3 + 0 into r3top
put item 3 of r3 + 0 into r3right
put item 4 of r3 + 0 into r3bottom
repeat while iswithin(the mouseloc, r3left,r3top, r3right,

r3bottom)
add item 6 of card field 3 to x

end repeat
end demo2

function iswithin mloc, lf, tp, rt, bm
get first item of mloc + 0
if it<lf or it>rt then return false

get second item of mloc + 0
if it<tp or it>bm then return false else return true

end iswithin

Notice that adding zero to a value tells the compiler that the value is numeric;
it will then convert it to integer immediately and use the integer value for later
computations. Although this script is much longer than the original script, it is
also considerably faster, since we have eliminated all but one of the callbacks
within the repeat loop.

The function iswithin uses no string variables - the only strings are the
parameter mloc and temporary values extracted from it - so its call and
return are also very fast. The comparisons are all integer compares, and the
function returns a Boolean value that can be tested very quickly by the inline
code of the repeat in demo2.

Within the repeat there is a chunk expression referring to a field. The field
value does not change during the execution of the repeat, so we can safely
move this part of the computation outside the repeat and pre-convert it to
integer (there are no changes to the function iswithin, so it is omitted here for
brevity):

on demo3
global x
put the rect of card button 3 into r3

put item 1 of r3 + 0 into r3left

37

38

put item 2 of r3 + 0 into r3top

put item 3 of r3 + 0 into r3right
put item 4 of r3 + 0 into r3bottom

put item 6 of card field 3 + 0 into i6

repeat while iswithin (the mouseloc, r3left,r3top, r3right, r3bottom)

add i6 to x

end repeat

end demo3

The global variable x is being used twice every time around the repeat, once to
get its current value, and a second time to put the new value back. Global
variables, like fields, are passed back from HyperCard as text strings, so there
is also a string-to-number and a number-to-string conversion going on each
time around the repeat. We can save considerable time by moving this conver
sion outside the repeat loop, provided that there are no callbacks left in the
loop that depend on the global variable x (and there are none in this example):

on demo4

global x

put x into localx

put the rect of card button 3 into

put item 1 of r3 + 0 into r3left

put item 2 of r3 + 0 into r3top

put item 3 of r3 + 0 into r3right

put item 4 of r3 + 0 into r3bottom

put item 6 of card field 3 + 0 into

r3

i6

repeat while iswi thin (the mouseloc, r3left,r3top,

add i6 to localx

end repeat

put localx into x

end demo4

r3right, r3bottom)

This time we did not need to add zero to the value of x to ensure that it came
out numeric, since the compiler can see that its main use is to have i6 added
to it. If you are not sure, take a look at the Analysis card to see what type
Compileltl assigned to the variable. In any case, adding 0 to a variable has no
cost in processing time.

We have not yet gotten rid of the last text callback in the repeat loop. It
happens that there is a ROM Toolbox call that returns the coordinates of the
mouse as a Point. A point is a 32-bit integer, where the high-order 16 bits are
the vertical and the low-order 16 bits are the horizontal coordinate. We can

use the fast Toolbox calls LoWord and Hi Word (which are compiled inline
instead of jumping off to the ROM) to separate these:

on demos
global x

put x into localx

put the rect of card button 3 into r3

put item 1 of r3 + 0 into r3left
put item 2 of r3 + 0 into r3top
put item 3 of r3 + 0 into r3right
put item 4 of r3 + 0 into r3bottom
put item 6 of card field 3 + 0 into i6
repeat while mouseiswithin(r3left, r3top,r3right, r3bottom)

add i6 to localx
end repeat
put localx into x

end demos

function mouseiswithin lf, tp, rt, bm

GetMouse mouseVH
put LoWord(mouseVH) into hh

put HiWord(mouseVH) into vv
return h~lf and ~rt and vv~tp and ~m

end mouseiswithin

The performance is tricky to judge in a loop like this that depends on user
interaction. The results below were arrived at by dividing the number of ticks
the XCMD takes to return by the difference in x (assuming the value in item 6
is 1) to get the average number of ticks around the loop once:

-- this is the benchmarking script.
on mouseUp

global x

put the ticks into oldt
put 0 into x

put 1 into item 6 of card field 3

repeat until x ~ 0
beep
demoO

end repeat
put "Average time is" && (the ticks - oldt) I x

end mouseUp

39

40

Although there is a lot of variability, depending on disk latency, size of
memory, and other factors too complex to mention here, the differences in
performance time on a Mac Plus were significant. The same test on an SE/30
got corresponding improvements.

Plus Time SE/30Time

demoO Uncompiled 6.0 1.8

demoO compiled 10.0 2.4

demos compiled 0.12 0.015

Using ROM Toolbox Routines

If Compileltf could only be used to speed execution of standard HyperTalk
commands, it would be useful, but would not really give you a lot more than
HyperTalk itself gives you. One of the things programmers do with externals
is provide access to capabilities not normally present in HyperCard. This is
done, as is most Macintosh programming, by using the set of routines built
into the Macintosh ROM, and contained in its System File. This set of routines
is commonly called the Toolbox, and contains support for all the things that
make the Macintosh special: fast QuickDraw drawing, control of menus and
dialog boxes, resources, and the like. Compileltf allows the HyperTalk pro
grammer to explore the Macintosh Toolbox, and make use of it when creating
externals.

This section will help you create externals that use the Toolbox. It is not,
however, a complete discussion of the Toolbox - Apple has taken 6 volumes
of over 3000 pages to do that! Instead, we will assume that you have, or at
least plan to get, Inside Macintosh, and one or more of the books on program
ming the Macintosh listed in the Suggested Reading appendix. In particular, it is
recommended that you have at least volumes 1, 2, and 4 of Apple's Inside
Macintosh. Volume 3 is little more than an index (since replaced by the Inside
Macintosh XRe/), but volume 5 is required if you are programming for a color
Macintosh, and volume 6 is essential for System 7. Programming the Toolbox
is difficult enough with these books; it is virtually impossible without them.

Procedures and Functions

When you look through Inside Macintosh, you will discover that the two types
of routines described are always identified as either Procedures or Functions.

In general, Inside Macintosh procedures can be thought of as being the same as
HyperTalk command handlers: they perform some action, and optionally can
take several arguments. Most of the time, you will use these procedures in
Compileltf just as you do normal HyperTalk commands.

You should note, though, that Procedures are shown in their listings in Inside
Macintosh with parentheses around their arguments. You should not include
these parentheses when calling a Toolbox Procedure.

Toolbox functions behave the same way as do HyperTalk functions: they take
zero or more arguments, and return a value to the line that called them.

This is not always the case, however: for example, the getFNum procedure on
page I-223 of IM returns the number of a named font. This procedure takes
two arguments: the first is the name of the font, the second is the name of a
variable, defined as Num in IM. The getFNum procedure works as a function
does: it puts into the variable num the number of the font whose name was in
the first variable. You can identify these types of variables in IM by the name
VAR in front of the parameters.

To understand and use Inside Macintosh routines, you should be comfortable
with Macintosh memory management, and the concept of pointers and
handles. In short, a pointer is a location in memory - typically represented as
a number stored in a variable - that in tum points to another address in
memory, which actually contains the data you are using. A handle is one step
removed from a pointer: instead of pointing at actual data at a location in
memory, it points instead at a pointer. Many of the Toolbox routines require
either pointers or handles to refer to the objects they work on. For more
information on pointers and handles, you should consult Appendix G of this
manual, which discusses using them in relation to HyperCard strffigs. Good
discussions of Macintosh memory management can also be found in the
Chernicoff and Knaster books mentioned in Appendix F.

You should also be somewhat familiar with Inside Macintosh data structures.
As discussed earlier, you don't necessarily need to know Pascal in order to
understand how to get at the various IM records. Compileltf is aware of most

41

42

IM data structures, and if you follow the example given earlier in this section,
you should be able to get at most data stored in these records.

Debugging

The easiest way to debug a compiled script is with Debuglt! (discussed
below). In addition to Debuglt!, Compilelt! offers a special flag that you may
find useful.

The$ symbol is just like a comment(--) if the Debuglt! option is turned off.
Lines in your script preceded by this symbol will be compiled only if the
Debuglt! option was on when you compiled your script. You must follow this
symbol with a valid command like "put" or you will get a compiler error
message. You might use this option to add extra code for looking at variables
or controlling loops during testing, or for locking handles whose contents
might be upset by Debuglt.

Debug It!

Debuglt! is a source level debugger for Compilelt!-created externals (XCMDs/
XFCNs) that greatly facilitates the location and correction of programming
errors. One of the most difficult and time-consuming areas of programming is
locating programming errors.

With Debuglt!, you can view your original source code at runtime along with
all variables. Debuglt! lets you execute the external a line at a time or continu
ously until some predetermined point. Variables can be viewed and edited
"on-the-fly" and the intrepid can even view and edit RAM if they wish. Error
detection and correction are greatly facilitated because you can actually see
what is going on when the errors occur rather than having to resort to guesses
and working backwards from a wrong result.

Invoking Debuglt!

Rather than forcing you to test your externals under a protective shell as some
debuggers do, Debuglt! is designed to work "in context" with your external. If
the Debuglt! checkbox is checked (either on the Title card or on the Script
card of Compilelt!) then Compileltl will build Debuglt! into your external.
While this adds 39K or more to the size of your external, it means Debuglt!
will be available anywhere you test your external, even in environments other
than HyperCard.

Obviously, an external with Debuglt! attached will require more memory than
without Debuglt! You should allow at least lOOK of memory for each currently
executing external that has Debuglt! attached. If Compileltl reports (via the
Options card or upon entering the Script card) that it can compile in its "Fast"
mode with Debuglt! checked, then you can reasonably assume you will have
enough memory available to test the same script with Debuglt! after it is
compiled.

To use Debuglt!, just check the Debuglt! checkbox and compile your script as
you normally would. When you execute your new external, the Debuglt!
window will open and execution will halt before the first line is executed
(assuming you are testing in HyperCard or SuperCard during the same
session as you compiled the script). At this point, you can set any breakpoints,
single step through the external, etc. We'll explain your options a little later.

Since you may have multiple externals being tested at the same time and each
may have Debuglt! attached, you need a way to control which ones will open
their debugging windows. This is done through a global variable called
"HyperDebuglt" (note: no exclamation point). Compilelt/ will initialize this
global for you during your compile but you'll need to initialize it yourself if
you quit and come back to test later - unless you have set breakpoints in the
external, and are content to open the window at the first breakpoint.

43

44

The following logic is used to evaluate the contents of the HyperDebuglt
global and control the debugging windows. If the first word of HyperDebuglt
is 1RUE, then the rest of the global is ignored and any external with Debuglt!
attached will open its window when executed. If the first word of
HyperDebuglt is FALSE, then no externals will open their debugging win
dows unless they hit a breakpoint. If the first word is not 1RUE or FALSE then
the items and words in the global are examined. If the names of any externals
that have Debuglt! attached are found in HyperDebuglt then their debugging
windows will open when they are executed. Compileltl puts the name of the
external into HyperDebuglt after compiling an external with the Debuglt!
option checked. If nothing is in HyperDebuglt then obviously no external has
its name in it, so no debugging windows will open, which has the same effect
as FALSE.

Regardless of the values in HyperDebuglt, the debugging window will always
open if a breakpoint is encountered during execution. Breakpoints will be
discussed in a moment.

The Debuglt! Window

Below is an illustration which shows the Debuglt! window. It may be helpful
to go to the Debuglt! help card in Compilelt! (the card after the on-line help
card), which contains an annotated (and slightly animated) copy of this same
screen shot.

ilD LetterCose
Debuglt!"" ©1 "1 ltty Silty Computers, All Rights Reserved.

D Step Duer D Reulew TeHt Collbocks
[step) D Reuiew Binary Collbocks

O (34) ROM/Libe
[Troce the result ?

[Resume L•ttarCasa
it ?

case H "1"

•
[Cir Dkpls)

[Send Msg)

[Refresh)

vor H "the quick broun fox jumped ouer the lazy dog"
x L 0

funclion LetlerCase case, var -- case=1 to capitalize, =2 to low•r casa
<> repeal with x = 1 to number of chars in var

get charToNum<char x of var) -- get asc:i i code for next charact•r
If case= I and it~ 97 and it~ 122 -- see if it's in lowercas;:e rQng•
then put numToChar(i l-32> into char x of vcir -- if il is: then convert i l
else if case = 2 and i l ~ 65 and it ~ 90 -- see if i l's in uppercase ranQe
then put numToChar<it+32) into chCll"" x of var -- if it is then convert it

erid r"epeal
return var -- retl.M"'n converted container

end Lat terCase

The window consists of three main parts; 1) the source code listing for the
external, 2) the variable monitor, and 3) the controls. Let's look at each sepa
rately.

The Source Code Listing

This is the original source code that you compiled with Compilelt! You cannot
edit the source at this point since it is only there for reference (the machine
code that Compilelt! created from your source code is what is really being
executed). You can do three different things with this source.

1) You can click on any line within a handler (the line will highlight) and an
analysis of that line will appear above the variable monitor. The analysis
will always begin with a number in parentheses like "(16)". This value is
the size of the actual machine code that line represents (in bytes). If
nothing else is listed then the line is made up entirely of 68000 machine
code. Other items that may appear as part of the analysis are:

45

46

BinCbk - This line has one or more binary callbacks

TxtCbk - This line has one or more text callbacks

ROM/Libe - 1his line has one or more ROM or library routine calls

NumCvt -1his line has one or more number I string conversions

Glo/Fld -1his line has one or more references to a HyperCard field or
global variable

Bkpt - There is a breakpoint set for this line

Text callbacks are also listed as part of the analysis on the Analysis card in
Compileltl and are the slowest kind of code Compileltl produces (some
times slower than before they were compiled). A small "T" will appear
next to any lines that contain text callbacks as well.

Binary callbacks are not as bad as text callbacks (global variable and field
references are examples of binary callbacks). Number conversions take
about as long as binary callbacks and ROM/Library routines; both are a
little bit slower than native 68000 code.

You can use the analysis to pinpoint areas of your scripts that could be
optimized if speed is an issue for you. This information is also useful if
you are trying to write code that has no callbacks at all (callbacks are not
allowed in filter functions and VBL tasks for example).

2) You can set breakpoints by clicking in the margin before any executable
line (executable lines are any lines that appear inside of a handler includ
ing the "end" handlemame statement). A small bullet will appear to show
where the breakpoints are. When execution reaches a line with a
breakpoint (but before the line is executed), the debugger window will
open (if it was closed) and execution will halt. When the external is first
run, the debugger window will open (assuming the global HyperDebuglt
is set-up to allow it to open) as if there is a breakpoint on the first line. At
this point, you would generally set the breakpoints you want in the source
code listing.

You can also set breakpoints at compile time by inserting Debug check

point commands into your script. These commands are also used to
invoke the HyperCard debugger when running uncompiled HyperTalk
scripts under HyperCard 2.x.

You can tum off a breakpoint simply by clicking on the bullet in the
margin.

3) You can tell what line is about to be executed by looking for the diamond
marker in the left margin next to the source code. The diamond marker
moves through the script denoting lines about to be executed.

The Variable Monitor

The variable monitor is located above the source code listing. It lists all
variables used by the external including Toolbox globals, HyperCard globals,
shared variables, locals, parameters, records, pointers, and handles. All
variables are arranged by handler and show their name, data type, and value
(if any).

Every handler in the monitor will list "it" as one of its variables whether or not
"it" is used by that handler. When "it" is uninitialized in a handler, its data
type will be a 11?11

• This is done since "it" is used in many different ways in
HyperTalk scripts so its data type may be constantly changing.

You can edit most variables simply by clicking on the value or name in the
monitor. A new window will open reporting the type and, if appropriate, the
size of the variable (e.g., "32-bit number" or "4-byte OSType") and an editable
field with the value of the variable. You can edit the value within the size
limitations imposed by the data type (i.e., OSTypes can only have four charac
ters so a fifth character would be ignored). Changes you make in this editing
window will take effect immediately upon clicking "OK." If the variable is a
record, a hex editing window will open instead (described below). You can
also open the hex editing window for any variable by Option-clicking its line.
Non-printable string characters (like linefeeds or tabs) will be displayed as a
small box (the standard non-printable character symbol) with the exception of
carriage returns which are displayed as"-," (option-Lor option-return in
HyperCard/SuperCard).

An Edit Hex button will be available, if appropriate, in the variable editing
window as well. The Edit Hex button opens another window showing the
actual hex values of the memory that contains the variable. If the variable is a
pointer, handle, or a longlnteger with a valid address in it, the memory at that
location is displayed rather than the memory that contains the value of the
variable.

47

48

There are cases where a variable of type longlnt ("L") may contain a pointer or
handle that Debuglt! does not know about. For this reason, if you edit one of
these variables, you'll be presented with the standard variable editing window
rather than the hex editing window that you might expect. Debuglt! always
examines the value of these variables before displaying them and if the value
makes sense as a pointer or handle, the Edit Hex button will also appear. If
you click on the Edit Hex button, the hex editing window will display the
memory the value points to rather than the memory that contains the value. If
you know you are looking at an unlocked handle, you may wish to have
Debuglt! lock the handle before displaying the memory it points to, so that the
act of opening the editing window will not move the data from the locations
being examined. Do this by holding down the option key while clicking the
Edit Hex button. Debuglt! will unlock any handle it locks this way; you
should not use the option key on any locked handle you want to remain
locked.

While in the Edit Hex window, you can double-click on any hex value, and
Debuglt! will convert the long integer to decimal and display the value editing
dialog. If the value is a valid address, it can be dereferenced by clicking again
on the Edit Hex button, so that you can view and edit the memory that it
points too.

You can view the memory at any address, whether or not you have a pointer
or handle for that address, by editing the value of "it" or "the result." "The
result" is shown at the top of the variable monitor, and "it" is at the top of
each handler's list of variables. Generally you would choose whichever of
these values is not currently in use (i.e., is of type "?"). Just Command-click on
it and enter your address, then click on the Edit Hex button.

If the current handler in your script has any active repeat loops, the number of
repeats left will be shown at the top of the variable monitor. Just click on these
values to open the variable editing window. If the loop does not have a
specified number of repeats (e.g., repeat until the mouse is down), you'll have
to find some other way to exit prematurely (possibly by changing the value of
a variable in the variable monitor).

On the same line with "the result" in the variable monitor, the current charac
ter used to delimit items is displayed. This character is set with the ItemDelim
property (not to be confused with SuperCard's ItemDel property which is
different but very similar), or if the HyperCard 2 checkbox is checked, by
getting or setting the ItemDelimiter property. If the ItemDelim property is set
to a non-printing control character or decimal digit, then it is displayed as the
(decimal) chartonum value of the character, in two digits.

The Controls

Debuglt! has a number of checkboxes and buttons. At the top left is a
checkbox that lets you ignore the execution of functions and handlers called
by the current script. If this is unchecked, every line that executes in Step or
Trace mode is displayed; if checked, then execution runs quickly through the
subroutines and returns to tracing or stepping when they return.

Moving down from the top left of the window, the first button is Step. The
Step button executes the current line (where the diamond marker is) and stops
before executing the next line.

The next button Trace executes a series of lines beginning with the current line
and moving down until either all lines are executed, a breakpoint is encoun
tered, you type Command-period, or you click on the stop sign in the upper
right comer of the window

The Resume button is similar to Trace except that no updating of the debug
ging window is performed (the variable monitor and current line marker will
not change until you stop execution or encounter a breakpoint). This allows
execution to proceed much faster but also means that you won't know what is
executing. Closing the debugging window has the same effect as clicking on
the Resume button except, of course, the debugging window is closed.

Use the Cir Bkpts button to clear all breakpoints in your script, including
those set by the debug checkpoint command. Breakpoints are remembered
even if you shut your machine down.

49

50

The next control Send Msg is sort of like the message box in HyperCard. It
provides a channel of communication between the debugger and the host
application. You may need to check the value in a field, set a property, navi
gate to some location, etc., while the external is running. (Remember, you are
inside your external command at this point, so you won't be able to click in a
field on a card and type a value.)

The Send Msg button allows you to send most HyperTalk messages to the
host application. Clicking on the button will open a dialog box with a field for
you to type your message into. Below the field are three buttons: Value,
Command, and Cancel. If you type something like the time or field 15

and then click on the Value button, the value will be retrieved for you. If you
type Beep or go card 15 and click on the Command button, that action will
be performed.

After performing a command or requesting a value, a dialog will appear
reporting whether the action was performed successfully or not. If you
requested a value, the value will be the second item in this dialog. The first
item in the case of a value or the only number in the case of a command will
be one of the following:

O=success

l=failed

2=not implemented

It is unlikely you will ever see a 2 appear but it might if you are testing in an
environment that has only limited support for the HyperCard l.x XCMD
interface. (This might happen in an environment that has no HyperTalk
interpreter, like Fox Software's FoxBase which supports XCMDs in only a
limited way.)

The final button is the Refresh button. The host application window may not
be correctly updated at times (remember, you are inside your external at this
point so the application is not expecting to update its screens until the external
is finished). The Refresh button redraws the Debuglt! window and tries to ask
the host application to update its windows as well. Not all host applications
will respond to this request (all versions of HyperCard and SuperCard will
respond, other applications may or may not). In some host applications, it may
be impossible to force an update.

Above the variable monitor are two checkboxes. These are used. to monitor the
various callbacks. The most useful of the two is the Review Text Callbacks
checkbox. If this is on, each time a text callback is encountered in your script, a
dialog will open showing the exact text that is being sent back to the host
application. This text may be somewhat different from what is shown in the
source code listing. Any differences are the result of adding in the text of any
variables and the addition of any string concatenation that may be required.
You can cancel the callback and substitute your own value for the result, edit
what is being sent back, or leave it unchanged at this point. When the host
application is done executing the callback, another dialog will appear showing
whether the callback was successful or not (see the result codes above under
Send Msg) and any value that was returned. If a value is returned, you can
edit it as well before executing the next line in the external.

The Review Binary Callbacks checkbox displays a result code after the
callback is executed. If you cancel a binary callback, the executing script may
become confused by the lack of any results it was expecting. Sometimes this
can crash the system, so you should avoid cancelling binary callbacks except
when you are prepared to deal with the consequences. Debuglt will stop
execution at the end of the current line when you cancel, even if you were
running in Resume or Trace mode, but it may already be too late at that time.

You'll also see a button which looks like a Stop Sign at the top-right of the
debugging window. Use the stop sign to stop execution at any point. Debuglt!
also checks for Command-period between lines. If you have your own trap for
Command-period, it probably will not work, since Debuglt! will see it first. No
matter how you resize the debugging window, the stop sign will always be
positioned so that it is visible.

Some Things You Should Know About Debuglt!

It is important to note that whenever a debugging window is open, you are no
longer in the world of the host application, your external has control of the
machine. You cannot switch windows, perform any editing tasks in other
windows, choose menu items, etc. You can switch out to other applications
under MultiFinder or System 7.0, though.

If your external calls another external that also opens a debugging window,
the called external will take control of the machine until it is finished at which
point control will return to the first external. You cannot switch between
debugging windows nor will the first debugging window be updated.

51

52

Because of the design of Debuglt!, the ROM call FrontWindow and anything
else that calls it (e.g., the HyperCard 2.0 callback FrontDocwindow) will
return incorrect values if any debugging windows are open. You can generally
work around this by placing a breakpoint on lines that contain these calls and
a second breakpoint on the line immediately following them. Close the
debugging window on the first breakpoint (allowing FrontWindow to obtain a
correct value) and the second breakpoint will cause the debugging window to
open again. This technique may not work in cases where multiple debugging
windows are all open at once (several externals all calling each other), in
which case you may be able to edit the result using the variable monitor's
editing window to correct the value.

You can drag the double-line between the variable monitor and source code
listing up or down to adjust the relative size of those areas.

The added size of Debuglt! will generally not be reflected on the Analysis
card. Debuglt! adds about 39K of code on top of your external, plus a copy of
your script and the information to build the variable monitor section. The
actual size of an external containing Debuglt! will vary depending on the
number of variables in your script and the length of your script.

Debuglt! has been tested under HyperCard 1.1, HyperCard 1.2.5, HyperCard
2.0, HyperCard 2.0v2, HyperCard 2.1, SuperCard 1.0, and SuperCard 1.5. It is
fully expected to work in other environments as well. Debuglt! is fully self
contained and does not depend on any aspect of HyperCard or SuperCard
beyond the HyperCard 1.0 XCMD interface, so it should work well in any
environment that supports externals.

Breakpoints, window size, window position and the split-window divider are
all remembered by the window. This is true even if you quit the host applica
tion and restart. If you reopen the external in a computer with a different
screen configuration than it was closed on, so that the Debuglt! window
would be off-screen, it is replaced in a default position on the main screen.

If there is insufficient memory to load your external with Debuglt! attached,
nothing will happen (the external will not be executed at all). The fact that the
external did not execute is reported in the result of the calling script, so
you'll need to design your own check for this in a way appropriate to your
situation.

If you want to take advantage of ICOM Simulation's TMON debugger or
Apple's MacsBug debugger to do lower level debugging chores, you can

embed Debugger or DebugStr calls in your script. Placing a dollar sign($)
before these lines (or any other lines for that matter) instructs Compileltt to
compile them only if Debuglt! is turned on. Lines beginning with a dollar sign
are considered to be comments if Debuglt! is not turned on.

When you have finished debugging your external, remember to recompile it
with Debuglt! turned off. Debuglt! will add considerably to the execution
time, memory, and size for your external so you'll want to remove the
Debuglt! code before distributing your external.

Distributing Externals with Debuglt! Attached

No runtime fees or licensing are required to distribute externals created with
Compilelt! However, if for some reason you want to keep Debuglt! attached
to your external when you distribute it, you must include the following notice
somewhere in your programs documentation:

The XCMD/XFCN [external name here] includes Debuglt!
Debuglt! ©1991 Tom Pittman. All Rights Reserved.
Debuglt! is a trademark of Heizer Software.

No notice is required for Compilelt!-created externals that do not include
Debuglt!, but a nice credit is always appreciated. If you do mention
Compilelt! in your documentation, you should also note that Compilelt! is a
trademark of Heizer Software in some appropriate place.

Analysis

After you've compiled a script, you can use the Analysis button on the Script
card to have Compilelt! give you an idea of how well your script has been
compiled. This button takes you to the Analysis card. The Analysis card is
shown below with the analysis for the Demo3 script presented in the earlier
Callbacks section of this chapter. Using the information on this card can help
you create faster, more efficient externals.

The field at the upper-left comer of the card shows statistics for compilation of
your external. The first line shows the number of references to global variables

53

54

0 H dei.o3

3 Global/Field References
8 TeHl/Number tonuenions ~ ~ ;

3
42 Bytes String [onst11nts L I r3loft

112 Bytes [ompiled HyperTalk L I r3lop

t 008 Bytes Included Library ~ : ~~!~~~.
,__t_76_2_B~y~te_s_T_ot_e_I -------< L I ;6

...... ,...,"'"'"':::i:::::i•••••••
t--Te_H_t _c11_ll_B_11c_k_s ____ -----,rA1,.._ ~.~.~~~~~~~: ___ _

the r•c:t or card button 3 ""Lr

the rnouse 1 oc P H mloc
P I lf
P I tp
P I l"'t
P I bm

F F111e:tion
0 Handler (•on•)
P Parameter
L Local Variable
G Global Variable
U Shar-ed Variable
V ToolBox Variable
T ROM or Libe Cal 1
X Cal led External

Types (2nd col):

I lnteogeor
H Hyp•rCerd S lr i ng
B Tru•/False
F Floatin; Point
S (ROM) P-Slring
T 4-char OSType
C Single Character
L 4-byle Inleger
P Pointer or Handle

or to fields in your external: the more of these references you make, the slower
your compiled external will run. The performance hit is greatest when these
are within a loop. The same is true of the number of text I number conver
sions (but less so): the more of these in your script, the slower the external will
run (again, the performance hit is greatest within a loop). The third line
simply tells you how many bytes in the external are strings or constants: one
byte is allocated for each unique string constant byte plus a couple of bytes of
overhead for length, padding, etc. Additional references to identical string
constants take no additional memory.

The fourth line in this field shows the number of bytes in the external that are
actually compiled HyperTalk. This is actual 68000 code, the fastest code
produced by Compilelt! Next fastest is the Library code, which is included as
part of Compilelt!, and glued to your external as needed.

Finally, the last field shows you the total size of your external.

The field in the lower left comer of the Analysis card shows you the text
callbacks used by your external. Since callbacks are very slow, you can use this
field to see which lines in your script produced the text callbacks. The analysis
for the Demo3 external in the graphic above includes two text callbacks, for
the rnouseLoc andfor the rect of card button 3.

The middle field gives you some details about the variables used in your
external. This field has three columns: the first shows the Kind of variable, the
second its Type, and the third its Name. The first line will always be the name

of your handler, preceded by either an "O" for "on handler," which creates an
XCMD, or an "F," for "function," which produces an XFCN. If the script
contains multiple handlers - either functions or "on" handlers - then each
handler will be listed separately, together with the variables it uses, and
separated from the other handlers by a double line of dashes.

Next comes the list of variables actually used by your handlers. The first
column shows the kind of variable, as a single character; the key to these
characters is shown to the right of the variables field. Toolbox procedures,
functions and variables are also listed if you use them in your script.

Types of variables are a little more complex; they are shown in the second
column. The first three types are fairly self explanatory: integers, HyperCard
strings (in the case shown, the variable "x" as used in the Repeat Loop), and
Boolean values. Booleans in HyperCard are represented by the strings "true"
or "false." "F"-type variables are floating point (SANE). A legend next to the
variables field shows the complete list of data types and their code letters.

55

56

THE SYMBOL TABLE

Compilelt! works, in part, by using "lookup tables" in its translation from
HyperTalk to machine language. This means that when Compilelt! encounters
a word in one of your scripts that it does not recognize, it must look up that
word in a special area called a symbol table, to find out the machine language
representation of that command.

Compilelt! allows you to customize this Symbol table, depending on the type
of externals you will be creating. ff, for example, you are writing an external
that does not use any features of the ROM Toolbox, you can make sure that
these items are not installed in the Symbol table. Similarly, if you are not using
any specific features of SuperCard, then these words need not be installed,
either. On the other hand, if you are using any of these special terms, the
correct symbols must be installed. The major benefit of not installing these
words into the symbol table is that you cannot accidentally use a symbol
unintentionally, thereby causing your external to fail when it runs. Another
benefit is that Compilelt! will have a shorter symbol table to consult, so it will
run much better in low memory conditions.

This modular nature of Compilelt!'s symbol table means that it will be pos
sible for Heizer Software and other developers to create stacks that update the
symbol table: either to modify existing symbols, or to add new symbols for
such things as direct support for new programs. These modifications will
likely be made available through sources such as CompuServe and America
Online.

To modify Compilelt/'s Symbol Table, click on the Other Options ... button on
Compilelt!'s first card or choose "Options" from the Compileltl menu. You
will be taken to the card shown on the next page.

57

58

With uoul'" pr-esent scr;pt, symbol table,
and available memor1a1, Compile It will use
its (l!mO modi> of compiling.

This ehtckbox enables: Compilelt to warn
you whtnever you click on a card 1 button
to paste a s:Cf"ipt tnto the script page and
tl'ler• is •ready a script there.

~Wern Pesle Script Ouerwrite

Rlweys Install In Sleek
You m~ find it useful to set up a single stiek
for XCl"I> dtovelopmeint. Click here ff you virlt
Compllelt to install all compiled XCMl>s and
XFCNs into your development stick.

Compil•It Ham•• for ToolBox Access
U:seful ToolBox Co•mands &. Functions:
ToolBox Variables & Fields
High-L•vttl Fi le Manager
HyperCard 2.0 Names Properties & Call ••
Color Quick.Draw Commands & Functions
Print 11anag&r Co•m•nds & Functions
Cuslot1 Symbol Edi l

You can customize the Compllelt symbol table
with just th• TMl:lo:x nad"l°IE'S you plin to use (ind
not names that m.ay conflict "What UOY are dolng).
ThH!' names are broken out into cat1Pgories for
HH of selection. Click on a line 'in the list abov•
to ins-tall or rtmove nam.s: in th.at 01l~or1J. You
~n also ritmon all installed names and return to
the orig'i'lil symbol tible by clicking on this
button---> I Restore symbol Table I

Analysis ... ~ ~l-1" I Nome List

To the right of the card is a scrolling list of the different symbol sets available
to you. Click on the first line in this scrolling field, and you will be taken to a
card that looks something like the one shown below. Each of the cards in this
Symbol Manager has the same format. The difference between the cards lies in
the actual symbols managed by that card.

Most of these namts are not defin•d in
lnsid. M~intosh, but they make it
easier for HyperTalk to access ROM
rout lnts ind data struct...-es.
See Analys1s card for key to symbol
tt,1pes.

Merk Used Nemes

Rdd All 11 Remoue All

I Add Marked 11 Remoue I
I Mork Only Dupes I

lndeH Pege

R BooleanType-
A ps@udo-field for accv:i>sing
byte Boolean vailues: in recorda

R Charactel"'Typ•
A pseudo-field for ~cessing 1-
by le charactel"' va 1 ues in records

F Char""aHanclle
This function can be used to get
th• handl& of a Hyp.,..Talk stl"'ing
~on't dispose this handle, since
Co•pilelt still ovns it

R Char""Type
A psli'Udo-field ror accessing 1-
byte character Villlues in records
(note Script Mg ... n•• conflict)

F Corn111andPeriod
A function t.hal relt.rn!!: true if
Command-Period is bitinQ pritssed

F Cli"lNewTvxtH.andle (string)
R• lLrns a new handl •

Neme List

To add all the symbols listed in the scrolling field on this card, click on the
Add All button; click on the Remove All button to remove them. After you
have clicked on either one of these buttons, Compileltf will work for a few
seconds, adding or removing the symbols.

If you don't need all the Symbols listed in the field, you can select specific
symbols by clicking on the ones you want in the scrolling list. As you click on
a symbol, it will be marked by a bullet (•). If you click on a marked symbol,
the bullet will be removed. You can add or remove marked symbols.

Next to each of the symbol names, you will see a one-character designator that
Compileltf uses to define the kind of symbol it represents. These are the most
common designators you will see:

F HyperCard or Toolbox Function or HyperCard property
K Constant (such as the name "space" for character number 32)
0 HyperCard command or Toolbox procedure
R Record Structure field name
V Toolbox or user-defined variable

On the cards showing the various symbols, those taken from Inside Macintosh
generally show the volume number and page on which that symbol is detailed
in IM. Others derived solely from Macintosh Technical Notes are identified
by the TN#. A few identify the Apple publication Develop as the source.

Note that the Marked Used Names button causes Compileltf to scan the
current script on the Script card, and mark only those names on this table that
are actually used in that script. Once those symbols have been marked, the
Add Marked button can be used to install them for use.

The following sections give you more details about some of the symbol tables
you can install into, or remove from, Compileltf Each of these tables is repre
sented by its own card in Compileltf From the Options screen, you can go to
any of these cards by clicking in the scrolling field; when you are at any of
these cards, you can use the Next and Previous buttons to get to other tables.

Note that you will have more symbol tables listed and included than are
discussed here; as you will see in the Custom Symbol Edit section below, it is
possible for libraries of symbols to be added to Compileltf, either by Heizer
Software or by others. Indeed, you can build your own custom symbols and
save them into separate updater stacks. 1his is useful if you want to distribute
them to others, or for updating future versions of Compileltf

Also on your disk is a folder of additional symbol tables stored in updater
stacks. The symbols in this folder are included for completeness, though you
generally will not need them.

59

60

You will also note that the HyperTalk names are permanently installed in
Compileltl and cannot directly be modified. However, whenever there is a
Toolbox command or function that has the same name as a HyperTalk com
mand or function, the Toolbox command or function will take precedence
over the HyperTalk command, except for the commands that are converted to
direct 68000 machine code. Sometimes, as in the case of the Random function
and the Left and TopLeft properties, your script may not behave as you
thought it would, or you may get syntax errors. If you use these HyperTalk
names, you should locate and mark them in the Inside Macintosh symbol lists,
and use the Remove Marked button to remove them. Or you can click on the
Mark Only Dupes button after installing the whole list, then Remove
Marked.·

Compile/ti will display a dialog any time you install symbols that have the
same names but different meaning as other symbols already installed. The
dialog will report the number of "duplicate names marked 0". These symbols
will be marked by a diamond (0) in the scrolling list for quick reference. When
you receive this alert, you should check to make sure these symbols will not
cause any problems for you. The Clear Marks button at the bottom of the card
will be changed to Mark Only Dupes so you can quickly mark all of these
symbols and then click the Remove button to remove them.

On the Script card is a check box at the top of the screen labeled Symbols. If
this option is on under HyperCard 2.0, each time you hit the return key at the
end of a line, that line will be compared to the currently installed symbols and
any matches will be displayed in bold type. If a script is already in the Script
card when you turn this option on, the entire script will be compared to the
symbol table. Note that this option makes NO attempt to verify syntax; it
merely compares names.

Compile/ti Names for Toolbox Access

These names are not necessarily defined in Inside Macintosh. Instead, they are
used for such things as conversion between HyperCard-type data structures
(i.e., text) and data structures used by the Toolbox routines. If you look at IM,
you will see that many of the types of data used by Toolbox routines are
represented in this table.

An example is the very handy charsHandle function. Many Toolbox rou
tines require a handle to a block of text. Frequently your external will receive
text as a parameter passed to it. If you need a handle to that text, you can get
the handle using a line such as:

put charsHandle(theText) into theHandle

where theText is the name of the variable holding the text, and theHandle
is the name of the variable that will hold the actual handle. You can then use
theHandle as a parameter to any Toolbox routines that need a handle to the
text they are manipulating.

If you will not be using the Macintosh Toolbox, you do not need to add these
symbols to Compilelt!' s main table.

Useful ToolBox Commands and Functions

This symbol table includes over 500 Toolbox commands (procedures) and
functions that users of Compileltl are most likely to need. Again, if you are
not using the Macintosh Toolbox, you do not need to install all these symbols.
If you are using the Toolbox, you should probably just add all these symbols to
Compilelt!'s main symbol table, unless you are operating in a lMB Macintosh.

One of the useful features of this list is that by examining the short codes of
each name, you can easily see whether you should treat it as a command or a
function when using it from Compileltl As mentioned earlier, procedures in
Inside Macintosh are usually treated as if they were HyperTalk commands.
These IM routines are marked with an "O" on this symbol list, while those
that are treated as if they were HyperTalk functions are marked with an "F."
Note, too, that each procedure or function generally includes a reference to the
volume and page of Inside Macintosh that details that procedure or function.

Tool Box Variables and Fields

These are the global variables and record fields defined in Inside Macintosh. IM
variables are marked with a "V" and field names are marked with an "R." For
example, the variable apFontID contains the font number of the default
application font, which affects all programs, and is thus a global variable in
the Macintosh system.

Again, if you will be using Compileltl a lot for compiling externals that use
the Toolbox, you might as well add all these names; if you will not be using
the Toolbox, you do not need them, and they actually can get in the way. Note

61

62

that there are a significant number of name conflicts between this list and
HyperTalk. Be sure to review the marked duplicates carefully, and delete
names you commonly use in HyperTalk. Frequent problems in compiling
scripts come from the use of the HyperTalk Value function or Ticks noun
with the Toolbox global variables or fields of the same name installed.

High-Level File Manager Routines

These are the high-level File Manager routines described in Volume II of Inside
Macintosh. Though Volume II describes them well, some of these routines have
been modified for use with the Heirarchical File System (HFS), so you should
also review Volume N of Inside Macintosh.

HyperCard 2.0 Names

Two kinds of names are on this card - new HyperTalk names introduced in
HyperCard 2.0 and the names for the extended XCMD interface discussed in
detail in the section Creating xWindoids of Chapter 4.

Use of these names may limit your external to being usable only in HyperCard
2.0 and above.

SuperCard Commands and Callbacks

There are two kinds of names listed on this card. One kind of name is that
used by Compilelt/ to access those parts of SuperTalk that are entirely new to
that program, or whose syntax is different from that of HyperTalk. The other
kind of name listed in this table refers to those specific callbacks that are
unique to SuperCard. The use of these new callbacks is described in Silicon
Beach's Tech Note #6, which was included with SuperCard; most of these
callbacks are used to access data stored in SuperCard's data-fork resources, or
in SuperCard objects such as bitmap graphics. Note that these are the faster
binary callbacks, not the slower text callbacks.

Remember that you need to include these SuperCard symbols in Compilelt/
only if you are using SuperCard-specific commands or callbacks in your
external. Most externals created using "plain vanilla" HyperTalk, including
most ROM Toolbox commands and functions, will run in SuperCard as they
do in HyperCard.

Color QuickDraw Commands and Functions

This symbol table contains nearly 100 Color QuickDraw-specific Toolbox
utilities, from Volume 5 of Inside Macintosh. Of course, if you are not using
color QuickDraw - even if you are using a color Mac II - you don't need to
install these routines.

Additional symbol tables with some of the less-commonly used symbols are in
separate updater stacks on the main Compilelt! disk. Look for a folder entitled
"Optional Symbol Tables." The low-level file manager and many of the
System 7.0 symbols are in this folder.

Custom Symbol Edit

The Custom Symbol Edit card allows you to define your own symbols for use
in Compileltl These symbols can be added to Compileltl's symbol library, and
can result in faster and smaller compilation. Once you've defined your own
symbols, you can use this card to create a separate stack that allows you to
deliver these symbols to others.

To create a new symbol, click on the New Name ... button on the Custom
Symbol Edit card. The display will change, showing radio buttons indicating
the different types of symbols Compileltl uses. To create one of these new
names, click on the radio button representing it at the left edge of the card,
which defines the class of symbol you are creating. When you click on one of
these buttons, another set of radio buttons appears which lets you define the
type of data or return value represented by the symbol, and the name of the
field in the upper right comer changes, to show you which type of data is
required for that symbol. Once you've created your new symbol, you can click
on the OK button to return you to the main custom symbol card. You can then
use the Add Marked or Add All button to add this symbol to Compileltl's
main symbol table.

The Symbol Editor lets you create these classes of symbols:

K Constant

You can define your own single-character constants, which will work in
your compiled scripts exactly the same way that return and linefeed

in HyperTalk refer to ASCII characters 13 and 10 respectively. To create,

63

64

for example, a constant called "Semicolon" that refers to a semicolon, click
on the Constant radio button, then type "Semicolon" in the Symbol Name
field, and "59" (the ASCII value of the semicolon character) into the Value
field. If you want, you can type some notes about what this constant refers
to in the Code and Comments field. Then click on the "C" data type
button to tell Compilelt! you're creating a character constant. To create a
constant string with more than one character, type the text (in a single
line: returns are not allowed) into the Value field and choose the "S" type.
Constant numbers (like pi) are similar, but you choose type "I" or "F" as
appropriate.

V ROM Global Variable

Many of the ROM Global variables are already included in Compilelt!'s
symbol libraries. However, you can define others by including their
address (in decimal), and telling Compilelt! what kind of data is con
tained in the variable.

R Record Field

Again, many of Inside Macintosh's record structures are included with
Compilelt! To create new fields, you need to calculate the offset of the
record field from the beginning of the data that contains it, and tell
Compilelt! that offset, as well as the type of data.

X External (XCMD/XFCN)

You can include an inline jump to another external in this custom symbol
card, for faster access to other externals. Normally, when a compiled
external calls a separate external, that call is handled as a text callback to
HyperCard, which can be quite slow. By creating the inline jump, the
second external is called directly, without passing the request to Hyper
Card. This means the second external is called much faster.

To create an inline jump to a second external, simply click on the button
Pre-Compiled XCMD to the left of the card. Radio buttons will appear
that let you define whether that external is a Command or a Function
("Command (no type)" and "HyperCard String Handle" respectively). All
you need to do is enter the name of the external in the Symbol Name field
and type in the number of parameters that function takes in the # Params
field. You can include notes about what the parameters need, and the
external's syntax in the Code and Comments field.

The external you install does not need to be installed in Compileltf itself; it
only needs to be in the stack in which you are using your compiled
external. ff the external is not in that stack (or anywhere in the hierarchy),
then the value Can't Load External is placed into the result. You can,
therefore, test to see if the jump was made correctly by calling the result
function immediately after the line that calls the second external, if the
external is an XCMD. ff the external is an XFCN, the error message is
returned as the function value.

Compileltf does not support optional parameters (that is, where a func
tion can take a varying number of parameters). Instead, you must pass
values for each of the items in the parameter list, even though you might
not need them all. You can pass empty parameters for those you do not
need. Although it is probably poor form, some externals might test the
paramcount to determine the number of parameters passed to them (and
behave differently for different numbers of parameters). To fully utilize
such externals requires a little legerdemain, mostly involving creating a
different symbol for each different number of parameters.

Let's assume you want to call XCMD "Sam" with either one or three
parameters. Start by creating a symbol "Sam" with three parameters, and
install it in the symbol table (using Add Marked). Then click on the Copy
& Rename button and select that symbol, renaming it as "Sam3". Finally
Remove All to eliminate the original Sam from Compileltf's symbol table.

65

66

Now you can Edit Marked to bring up the original Sam, and change the
number of parameters to one. Click OK, add it to the symbol table, and
Copy & Rename this one as "Saml." After removing the original Sam
again, the two copies can be installed and will work correctly.

H Text Callback

Text callbacks are generally built into Compilelt/ Creating new ones,
though, allows you to extend Compilelt/ to deal with additional callbacks
included in programs that are not HyperCard compatible. Custom sym
bols are required only when the text callback syntax allows parameters
separated by spaces and prepositions (or other words) rather than com
mas.

*Binary Callback

Binary callbacks are faster than text callbacks but are still performed by
HyperCard. This kind of callback is used to retrieve values from fields, to
access global variables, and in the case of SuperCard, to work with
resources in the data fork.

To add a binary callback, you'll need to know the number and types of the
inArgs and outArgs for the XCMD parameter block; Compileltl will set
up all the necessary glue. Compilelt/ assumes, however, that there is at
most one result value in outArgs[l], whose type is declared by choosing
one of the result type radio buttons. You can have up to 8 inArgs values
(the actual number is defined by Apple in the case of HyperCard, or
whoever else is supplying the interface). You must type into the param
eter list field the letter representing the appropriate data type. For ex
ample, if the parameters were, paraml:Longlnt; param2:Pointer;
param3:Str255, you would type LPS or L,P,S (commas are optional).

It is important to realize that integers, Booleans, pointers, and handles are
all sent as 4-byte values. Strings (both HyperCard zero-terminated and P
strings) and floating-point (extended) are passed by reference, that is, a
pointer or handle is passed instead of the data itself. Compileltl knows
about these conventions and makes the appropriate conversions for
inArgs, but callbacks generally do not pass back pointers to P-strings or
extended floating point numbers allocated in their own storage, which
means that there are no functions that return P-strings or floating-point
values.

Unfortunately, some callbacks work as commands but are defined at the
Pascal level as functions. 1his means that there is no outArgs value, but
another inArgs is allocated for the pointer to some space that the client
program has allocated for the returned value. The custom symbol edit
script is not able to cope with this kind of anomaly, and if you want it to
have a function interface, manual patching will be necessary. The tech
nique for patching is beyond the scope of this manual.

$Raw lnline Code

1his type of symbol is actual machine language that you can insert
directly into your external. Adding it to a library means that you can refer
to the code by name, instead of having to type the code separately each
time you create an external that uses it. 1his discussion is beyond the
scope of this manual.

67

68

GETTING TO KNOW THE TOOLBOX

1his chapter provides background and tutorial material on programming with
the Macintosh Toolbox. This is no easy task as the main reference, Inside
Macintosh, is over 3000 pages. Professional Macintosh programmers also rely
on hundreds of pages of technical notes, back issues of MacTutor (a great
reference source), and many other references. Consider this an introduction
but by no means a complete discussion of the issues involved in programming
the Macintosh.

Bridging The Gap to Inside Macintosh

Compilelt!'s extensions for the ROM Toolbox are powerful but sometimes
confusing for the uninitiated, especially since the common reference sources
use Pascal rather than HyperTalk. 1his section summarizes information found
elsewhere in this manual and presents in HyperTalk some of the more com
mon record structures found in the ROM Toolbox.

1his section should not be considered a replacement for Inside Macintosh nor
should you consider this a complete reference. It is provided to ''bridge the
gap" between writing code which uses the ROM Toolbox with Compileltl and
the standard reference sources which generally use Pascal for examples.
Consider this a "Quick Start Guide" - a more detailed discussion is presented
in a later section.

In Pascal, both procedure and function calls show their parameters enclosed
by parentheses. In HyperTalk, only function calls have their parameters
enclosed. Below are the declarations for a function and a procedure from
Inside Macintosh followed by the HyperTalk syntax for calling them.

A common Toolbox procedure from Inside Macintosh:

Procedure Drawstring (s: Str255);

To express it in HyperTalk, you would write:

Drawstring anystring

69

70

A common Toolbox Function from Inside Macintosh:

Function EqualPt (ptA,ptB: Point) : BOOLEAN

In HyperTalk, you would write:

put EqualPt (ptA,ptB) into x

Notice that the Equal Pt function returns a Boolean value (true/false), so we
used a put statement to express it in HyperTalk (we had to do something
with the value, like put the value somewhere). When looking at a Pascal
program that uses a function like Equal Pt, you will see it expressed some
thing like:

x := EqualPt (ptA, ptB)

which translates into the HyperTalk put statement shown above. You could
also have just used the Boolean result directly in your HyperTalk (which looks
just like the corresponding Pascal):

if EqualPt (ptA,ptB) then ...

Notice that the Inside Macintosh routines list both the data type for any param
eters and the data type of the return value of any function. In addition to the
data type information, you may also see the word VAR before a parameter as
in this example:

Procedure GetindType (VAR theType: ResType; index: INTEGER);

VAR parameters are somewhat like function return values in that a value is
placed into the parameter (kind of like a two way street). Sometimes you'll
need to pass a value into one of these parameters and it will be changed into a
different value and other times you just need to supply an empty container to
hold a new value that the routine will supply. The documentation for the
routine will tell you if you need to supply a value. The GetindType proce
dure might be used like this:

GetindType theType, 1

if theType = "ICON" then

From time to time, you may need to access a ''Low-Memory Global" or
"Toolbox Global." These are global variables maintained by the operating

system. Compileltl makes them available for you - all you have to do is refer
to them by name. (You do not have to declare them in any way, except to
install them in the symbol table.) Apple warns against changing the values in
these globals but it is generally safe to examine them. Low-Memory Globals of
interest are listed at the end of each chapter in Inside Macintosh.

Notice that the data type for the two parameters for Equal Pt is type "Point."
A Point is a record structure. A record structure is a collection of values stored
together in one place that can be looked at as a group. The individual parts in
a record structure are called fields (not to be confused with HyperCard fields).

Each time a new record structure is discussed in Inside Macintosh, its structure
is shown, and also repeated at the end of the chapter. Points are defined in the
QuickDraw chapter with the following definition:

Point = RECORD
CASE INTEGER OF

0:

(v: INTEGER;

h: INTEGER) ;

1:

(vh: ARRAY [VHSelect] OF INTEGER);

END;

A Point is made up of two fields with the names "v" and ''h" (vertical and
horizontal). In this case, both fields are integers. (Remember our discussion of
Data Types earlier in this manual- integers take up two bytes.) Two integers
take up the same space as a long integer (four bytes).

Points are used to specify coordinates (screen locations) and are commonly
expressed in HyperTalk as two numbers separated by a comma (e.g., set the

loc of button 1 to 100,100).

You can create a point in one of several ways. The easiest is to use the Set Pt

procedure (IM vl-193) which takes two integers and combines them, returning
the value in a VAR parameter.

SetPt rnyPt, 100,100

Or, if you don't mind your external being compatible ONLY with HyperCard
2.0 and above, you could use one of the binary callbacks from the HyperCard
2.0 Symbols card as in:

71

72

put the loc of button 1 into xy

stringToPoint xy, myPt -- rnyPt is a VAR

-- rnyPt now has a Point record in it equal to xy

The reverse being:

PointToString rnyPt, xy -- xy is a VAR

set the loc of button 1 to xy

A similar but more complicated record structure is a Rectangle (usually
abbreviated Rect) which is really two points combined and used to specify a
rectangular area (e.g., put the rect of button 1). The Inside Macintosh
definition for a Rect is:

Rect ~ RECORD

CASE INTEGER OF

0:

1:

(top: INTEGER;

left: INTEGER;

bottom: INTEGER;

right: INTEGER);

(topLeft: Point;

botRight: Point);

END;

Just like set Pt shown above, another procedure, SetRect, can be used to
create a Rect. The problem is that a Rect is eight bytes, which is larger than
Compileltf will allow for a variable. You have to allocate some space to hold a
Rect; the easiest way to do this is to use a shared variable:

global rnyRect:Record[BJ

Function rnakeARect x, y, xl, yl

setRect rnyRect, x, y, xl, yl

Compileltf will make sure the memory is released automatically.

Just as with Points, there are two new callbacks in HyperCard 2.0 for creating
Rects and decoding Rects back into strings that HyperCard understands
(strToRect and RectToStr).

You may want various portions of a Rect such as just the bottom value or just
the right value. Inside Macintosh provides names for each field in a record
structure to make this easy. Assuming you have a Rect in a shared variable,
you access the individual fields like this:

put rnyRect.top into theTop

put rnyRect.bottorn into theBot

put rnyRect.Left into theLeft

put rnyRect.Right into theRight

You may have noticed that the Inside Macintosh definition for Rect uses the
word CASE. This means that there is more than one way to view the informa
tion in the record. Since a Rect is really two points, you may want to extract
just the bottom right or top left points. Two additional fields in the Rect
structure are used for this:

put rnyRect.BotRight into theBottornRight

put rnyRect.TopLeft into theTopLeft

You may have noticed by now that most of the fields in the Rect record
structure have counterparts of the same name in HyperCard - the Top,

Bottom, Left, Right, and TopLeft properties. Compileltl requires that you
make a decision: you can use these names only as property names or as record
field names in a particular script. When you install symbols from any of the
symbol cards and there are any conflicts (i.e., the Top record field name vs.
the Top HyperCard property), you will be alerted that there were "duplicate
symbols" - the last symbol installed in this case is the one that Compileltl
will use. This being the case, the following bit of code will result in an error
message:

put rnyRect.Top into rnyTop

add the Top of field 1 to rnyTop

There are at least two ways to resolve this situation: 1) Use the Copy &
Rename button on the Custom Symbol Edit card to make a copy of the
conflicting symbol, and rename it. After renaming, install the copy to avoid
the conflict. 2) Compileltl provides a number of "pseudo" fields for the
common data types (e.g., IntegerType, LonglntType, OSType, SaneType,
Str255Type, etc.). These are all listed on the first symbols card. Since we can
see from the Inside Macintosh definition that the Top field of a Rect is an
integer and the first field in the record structure, we remove the Top record
field name from the symbol table (using the buttons on the symbol table
cards) and use the following code:

73

74

put myRect.integerType[l] into myTop
add the Top of field 1 to myTop

The brackets tell Compileltl to extract the value of the size specified by the
name of the pseudo field at the index specified inside the brackets. This is
called array notation and is very useful when dealing with record structures.
The following code fragments show various ways to work with a Rect using
array notation:

put myRect.integerType[l] into my Top

put myRect.integerType[2] into myLeft
put myRect.integerType[3] into my Bot

put myRect.integerType[4] into myRight

put myRect.LongintType[l] into myTopLeft
put myRect.LongintType[2] into myBotRight

repeat with i = 1 to 4
put myRect.integerType[i] into item i of myRect

end repeat

Let's consider a practical application of the array notation for speeding up a
slow script.

Consider the following pure HyperTalk script which counts the number of
occurrences of a specified character in a given string:

function countThings string,thing

put 0 into count
repeat with i=l to length(string)

if char i of string is thing then add 1 to count
end repeat

return count
end countThings

When compiled into an XFCN, the above function is about twice as fast as the
uncompiled version. The chunkexpression inside the repeat loop takes most
of the time. Replacing the chunk expression with some simple array notation,
and performing numeric compares instead of string compares, results in a
very fast XFCN - hundreds of times faster. Here is a revised version using
array notation:

function countThings string,thing
put 0 into count
-- use charsHandle to get a handle to the string
put charsHandle(string) into strHand

put chartonum(thing) into myThing -- get the ASCII value of
thing

repeat with i=l to length(string)
if chartonum(strHand@@.charType[i])

count
end repeat

return count
end countThings

myThing then add 1 to

Notice that since we did not have a record structure to deal with, we used the
charsHandle function to extract the handle to the string parameter. If you are
working with handles (or pointers) instead of shared variables of type Record,
you need to use the dereference operator(@). Use one dereference operator for
pointers and two for handles.

Safe Pointers for Faster Strings

Although Compileltl considerably improves the performance of ordinary
HyperTalk, any Pascal or C programmer can get much better performance
than that. This section introduces some of the more esoteric data type capabili
ties of Compileltl available in Pascal or C but not in plain HyperTalk, so that
you can get the same performance levels formerly possible only in those
languages. You should be reasonably familiar with programming in
HyperTalk before embarking on this new adventure, and it will probably help
to have Volume 1 of Inside Macintosh handy for reference. Some of our ex
amples also use the toolbox routines from the symbol table sections of
Compileltl They are not already installed in Compileltl as it is shipped
becaus.e there is some danger in misusing them. Back up your system (you do
that regularly anyway, don't you?), install the symbols, and sally forth.

There are two things that make compiled HyperTalk scripts run slower than
you might expect from machine language. One of these is text callbacks. If you
have to use them, you have to use them, but at least with a little care you can
move most of them out of your inner loops.

The other major slowdown is string handling, which we can improve substan
tially by some sharp programming. The one thing that slows string operations

75

76

down most is the whole concept of chunk expressions. Chunk expressions are
a very powerful tool, but like powerful motors in 1960-era automobiles, they
take a lot of gas - even if you are not using all their power. Let's begin by
looking at a reasonable script to replace all occurrences of a particular charac
ter in a string by some other character:

-- Normal Chunk Expressions
-- replace all occurrences of aChar with bChar in string
Function ReplaceChar string, aChar, bChar

repeat with i = 1 to length(string)
if char i of string is aChar then put bChar into char i of

string

end repeat

return string
End ReplaceChar

You and I know that achar and bChar are single characters, but Compileltt
does not know that. So it generates general code to handle all possible lengths
of all three parameters. Compileltl is not even smart enough to figure out the
index variable i will never lie outside the boundary of the string, although it
might actually do that if achar is longer than bchar, which we said would
not happen if this function is used correctly. So Compileltl will test i against
the current length of string on every iteration through the repeat, then com
pare the character it finds there against achar, and if it happens to match,
replace that single character with whatever string happens to be in bchar.

That's a lot of work, but HyperCard would do as much for you also. Well,
maybe a little better; they are nice folks at Apple. See below, time #3.

String compares are slow and have to be done by special routines; Compilelt!
generally uses the Toolbox ROM to do the actual comparing, but in this case it
noticed that you are comparing a single character against achar, so it's a fast
character compare after all. If you want a case- and diacritical-insensitive
comparison, so that "a" matches" A" as well as "a" and "a" and so on, then
you need to fool Compileltt into thinking it's a longer string, such as:

if char i to i of string is aChar

This takes much longer to run, because every character comes out and gets put
into its own string, then is sent off to the toolbox to compare (see time #1
below). In this case we want to replace exact copies of a particular character
(perhaps a comma or tab or lower-case "e") with some other precise character
(maybe a space or capital "E"). For that the machine-language byte compare is

quite adequate. Compileltt will choose the optimum 68000 machine code if it
knows that you know it is comparing a single character. We could also write it
more precisely, though Compileltl gives about the same runtime as the
original script:

-- Character Chunk Expressions

-- replace all occurrences of aChar with bChar in string
Function ReplaceChar string, aChar, bChar

repeat with i = 1 to length(string)
if char i of string is first char of aChar
then put bChar into char i of string

end repeat
return string

End ReplaceChar

The first char of aChar and char i of string are both known to be
single characters (even if achar is a longer string, its first character is still a
single byte), so Compileltl generates fast one-byte compares instead of the
longer string comparison library calls. The put command to replace that
character is not quite so simple, but the compare typically happens many
more times than the put (are you replacing every single character? I didn't
think so). The performance is still quite disappointing because every time you
touch character i of the string, Compileltt goes out and counts the number of
characters in it. You never know - it might have changed. You and I know it
didn't, but Compileltl cannot remember whether the last time was a substitu
tion or not, nor if the characters were replaced with the same size string.

One way to speed this up for long strings would be to eliminate the counting.
Here is where some of the newer syntax helps.

Character strings in HyperTalk and Compilelt/ are stored in memory as
handles. A handle is a special number in the Macintosh memory called a pointer
that points to another place in memory that contains another pointer that
ultimately points to the real data. Yes, it is a little confusing; only expert
programmers understand it right off, while the rest of us have to think about it
a while. We'll come back to the concept of handles and pointers in more detail.
For now, think of a handle as a number that is somehow connected to the
place in memory where the data string is.

Normally Compileltt hides the whole idea of handles from you, and you don't
have to think about them at all. But now we are going to go sneaking around
Compilelt/'s back, so we need to know what holds the strings up so we won't

77

78

trip qn the guy wires. In the first symbol table card in Compileltl ("Compilelt!
names for Toolbox Access") there is a name you can install called
CharsHandle. 1his is a pseudo-function that gives you the handle attached to
any string:

put charshandle(mystring) into myhandle

With this command you can now reach in and touch the data in your string
without bothering Compileltl The easiest thing you can do is use something
like chunk expressions, but you tell Compileltl that you are looking at the
characters of this handle, so it will stay away from the slow string handle
manipulations, and use a toolbox routine directly to measure the handle size,
which is somewhat faster than counting the characters in a long string (but
probably slower for very short strings - you can't win them all). We use
another pseudo symbol from the "Compilelt! names for Toolbox Access" card
to let Compileltl know this is a character we want to look at (and not some
other kind of data). We can also use the same notation to put characters back
into strings. Here is the same routine with the faster handle chunks:

-- Character Handle Chunks
-- replace all occurrences of aChar with bChar in string
Function ReplaceChar string, aChar, bChar

put CharsHandle(string) into myHandle
repeat with i = 1 to length(string)

if char i of handle myHandle is first char of aChar

then put bChar into char i of handle myHandle

end repeat
return string

End ReplaceChar

If you got tired of waiting for the previous examples to finish, you are in for a
surprise. This one is so much faster that if you shortened the previous tests too
much, there's nothing left here (see time #4).

You can also use a Pascalish array notation to get at the individual characters.
Note that (unlike HyperCard chunks), character arrays start counting with 0,
the way they do in Inside Macintosh. This is about the same speed:

-- Character Arrays
-- replace all occurrences of aChar with bChar in string
Function ReplaceChar string, aChar, bChar
put CharsHandle(string) into myHandle

repeat with i = 0 to length(string)-1

if myHandle@@.charType[i] is first char of aChar
then put bChar into myHandle@@.charType[i]

end repeat
return string

End ReplaceChar

Pointers and Handles

This last example introduced three new syntactical devices that Pascal pro
grammers used to have a monopoly on. They are designated by the pointer
and handle dereference operator"@", the field selection operator 11

•
11

1 and the
array subscript designator"[...]". A serious discussion of pointers and handles
is finally unavoidable.

A good time-waster in working with strings has to do with their representa
tion in memory as handles. It's not that handles are inherently inefficient, but
such things as moving them around, changing their size, and copying them
take time. Professional programmers using conventional programming
languages tend to allocate fixed blocks of memory for strings so that the only
moving that happens is when a string is copied or characters are added or
deleted. But of course they also know pretty much the maximum size their
strings can grow to and they can take appropriate action if they get too big. In
HyperTalk there is no way to tell the computer how big a variable will get to
be, nor what to do if it gets any bigger than that. So HyperCard just allocates a
variable amount of space on the heap. The heap is a large region in memory
where everything variable in size or movable goes; it is shown in the
Multi.Finder status window as a partially-filled bar chart. If you add characters
to your variable, HyperCard asks for more memory; if you delete a chunk of
it, the extra space is released to be used by some other variable or resource. All
HyperCard has to do is keep track of its handle.

Let's talk a little about handles and pointers. This will be a little elementary, so
if you already understand pointers and handles, you might want to skim this
section.

Every byte in your Macintosh memory has an address, represented by a 24-bit
number. In System 7.0, Macs with a PMMU or 68030 have 32-bit addresses. All

79

80

along addresses have been stored in 32-bit (four byte) chunks of memory: the
extra byte was basically unused. So let's pretend that we're "32-bit clean" as
Apple puts it: all addresses take up the whole four bytes of a 32-bit word. A
register in the 680x0 computer is also 32 bits wide, so it just exactly holds one
address. That address "points" to some byte in your computer's memory. A
number consisting of all bits zero points to address 0, which is the first loca
tion in memory. The number 00000001 points to the next byte, and so on. The
first few thousand bytes in memory have been reserved to the operating
system and are called "system globals." Some of those global variables have
names listed in Inside Macintosh, like BufPtr and DeskPattern, that you can
use in your compiled code (but note that the Thought Police at Apple wish
you would not use them).

Many of the system globals are pointers - that is, they occupy four bytes of
memory and they are themselves 32-bit numbers that contain the addresses of
other places in memory. An example of a pointer is BufPtr. It takes up the
four bytes of memory from 268-271 (hexadecimal $010C-010F) and contains
the address of the end of the unallocated memory before a program is loaded.
Some INITs install themselves above BufPtr, moving this pointer down to
reflect the reduced memory now available. An XCMD in HyperCard has little
to do with this pointer, since HyperCard's CODE 0 resource and private
variables are copied into the last bytes below BufPtr,.and any change in it
would probably crash either HyperCard or the whole system.

Pointers are like that: they point to a place in memory where the data is
unlikely to be moved. A pointer can point to anything, since in fact any
number is a pointer to something, but pointers are most useful for keeping
track of specific data some place in memory. Usually a program will ask the
Toolbox to allocate some previously unused memory, and return its address
to you in a pointer, using the Toolbox call NewPtr. The system's memory
manager keeps track of what memory has been allocated (and is therefore in
use, showing up darkened in the Multi.Finder status window) and what is still
available. When the program is finished with that block of memory, it can be
released for other use by calling the Toolbox routine DisposPtr. More on
these routines later.

Let us suppose that your XCMD is going to build an index to your stack for
fast searches. Suppose further that there are 120 cards in your stack, and that
the index requires ten bytes per card. So you call NewPtr, giving it a size of
1200 bytes, and you get back a pointer to a block of memory, perhaps at
address 096580. The memory manager has promised you that you own that
1200 bytes for as long as you need it, and you copy the pointer to a variable or

a field in the stack to keep it handy for future use. Now the user of your stack
adds another card, so your script requires 1210 bytes for its index. You only
have 1200 bytes, but you can use the system call SetPtrSi ze to increase the
size of your block of memory to 1210 bytes - but only if the next ten bytes are
not already allocated to some other use, perhaps some internal HyperCard
function. If so, you are out of luck: SetPtrSize will fail. There is plenty of
unused RAM available, but to take advantage of it the memory manager
would have to move your data. The only trouble is that it does not know
about all those copies you made of the pointer. If you tried to use one of them
to access your newly-enlarged index, you would only reach the outdated old
index - or worse, some data that was allocated to another request and no
longer belongs to you. The memory manager will not let that happen.

The solution to being able to change the size of blocks of memory at will is to
let the memory manager know about all the pointers to those movable blocks.
And the easiest way to do that is to have only one pointer, called a "master
pointer," owned by the memory manager itself. All your program gets is a
copy of a pointer to the pointer, called a handle. You can make copies of the
handle all you want, because the memory manager promises not to move the
master pointer. If the data needs to be moved to make it bigger or to make
room for another memory request, the memory manager can move the data
and change the number in the master pointer to reflect the new address of the
data. The handle still points to the original four bytes that contain the (now
modified) master pointer, and your program can reach the data at its new
address as easily as before it was moved.

There is no such thing as a free lunch, right? The downside of handles is that it
costs you one extra machine instruction to get to your data. Considering the
other time-consuming factors in your program execution, that is not a big deal
unless you are going to be touching that data thousands or millions of times.
Examples of that kind of program include string copy and compare routines
for very large strings. But you cannot write one of those as efficient as
HyperCard's anyway, can you? That may not be completely true, as we have
seen, but it is a consideration.

As it turns out, the extra time for handle access is lost in the loop overhead.
Here is our favorite example, modified to access the character data using
pointer arithmetic - something that only a C hacker could appreciate. You can
do it in compiled HyperTalk, but why bother? The time is slightly longer than
for the array or chunk notations (see time #5), and certainly more dangerous
(again like C, which is consistently slower and less robust than more advanced
languages like Pascal, despite widespread prejudice to the contrary):

81

82

-- Pointer Arithmetic
-- replace all occurrences of aChar with bChar in string
Function ReplaceChar string, aChar, bChar

put CharsHandle(string) into myHandle
put myHandle@.PtrType into myPtr

repeat length(string)
if myPtr@.charType is first char of aChar

then put bChar into myPtr@.charType
add 1 to rnyPtr

end repeat
return string

End ReplaceChar

The Times

On a 10,000-character text file (the first three chapters of the Bible), the time in
ticks it took a fairly fast Madi to replace all periods with semicolons (97
substitutions, or about 1 % of the characters) for each of the algorithms in this
section is:

#1. Vanilla HyperTalk, char i to i...

#2. Vanilla HyperTalk, char i of ...

#3. HyperCard 2.1

#4. Handle chunk or array notation

#5. C-like Pointer Arithmetic

Handle Chunks

10722

3004

2407

5

7

Compileltt allows chunk-like expressions on handles and pointers that you
got from CharsHandle or a toolbox routine. You can think of them as some
what like HyperTalk chunk expressions on ordinary string containers, but you
insert the reserved word "Handle" or "Pointer" before the name of your
container to let Compileltl know that you are using the new notation. Also
like HyperTalk, you can access characters, words, items, or lines - well, you
can use those names, but what you really get is low-level machine chunks,
which are characters (single bytes of type character), Words or Integers (two
byte numbers), or Longlnts (four-byte numbers). Compileltt gives you fast
machine code to get to these objects. If you put something into a non-existent
chunk in a handle, Compileltl will extend the handle to accomodate it. Unlike

HyperTalk chunks, the inserted chunks are not empty, they are just garbage -
whatever was previously there in memory. What does an empty number
mean, anyway? Zero is not the same as empty, even in HyperTalk. Besides, we
want this to go fast, and filling all those inserted numbers with default values
would take valuable time. Pointer chunks cannot be extended, because many
pointers do not refer to the beginning of a Memory Manager data block, so it
cannot be resized; if you put something into a non-existent pointer chunk,
Kaboom! Please be careful.

Compileltl does not look for a delimiter between adjacent chunks in a pointer
or handle structure to determine where a particular chunk is; instead, it
divides all the data into equal sized chunks (you specify what type of chunk
you want). This allows you to view your data in many different ways - a set
of 30 integers could also be viewed as 60 characters or 15 longlntegers.

You write these special chunk expressions just as you would if you were
requesting a chunk of a HyperCard field, but replace the word "field" with
either "handle" or "pointer." Here are some examples:

put the nwnber of longints in handle myHandle into x

delete first char of handle myHandle
put 150 into integer 99 of handle myHandle
repeat with i = integer 15 of handle myHandle to 255

A little fancier but still valid, this finds the tenth pointer in the handle
myHandle, uses that as an address and finds the second integer of that
structure, converts the number to a character that it stores in the third charac
ter of the structure that it located by getting the number in field ID x and
converting the number to a pointer:

put numtochar of integer 2 of pointer 10 of handle ,
myHandle into character 3 of pointer field ID x

ff you delete chunks of a handle, the handle will be reduced in size accord
ingly. ff you put a chunk into a location of a handle that does not exist, the
handle will be enlarged so that the chunk does exist (any chunks between the
previous last chunk of the handle and the newly created chunk will contain
garbage so don't rely on their being empty or zero). Note also that there is no
chunk 0 in any handle chunk expressions (as there is in regular HyperCard
chunks).

83

84

If you are working with large amounts of data, you may run into a situation
where not enough memory is available for Compileltl to perform the work a
particular handle chunk expression requires. The Toolbox contains a special
"low-memory global" (sometimes referred to as a "Toolbox global") called
MemErr. If Compilelt! tries to enlarge a handle and the attempt fails, this
special global will contain a number other than 0 (probably negative). It is a
good practice to check MemErr any time you think Compileltl might need to
enlarge a handle; if MemErr is not 0 then exit cleanly. Your code might look
something like this:

put 10 into integer 3000 of handle myHandle

if memErr * 0 then return "Error: not enough memory"

Pointers are a little less forgiving. If you want to use chunk expressions with
pointers, note that:·

1. Compilelt! has no way of knowing if a pointer points to the beginning of a
block or at the middle of a block, so it will not enlarge a pointer to hold a
nonexistent chunk. If your chunk does not exist, you will end up overwrit
ing data that does not belong to you and will most likely crash your
machine.

2. For the same reason, you cannot delete a chunk from a pointer, nor count
the chunks in a pointer.

Recall that handle chunks interpret the same bits of data in the handle in
whatever way your chunk calls for, with very different results. Thus if you
pass a string of numbers or digits such as "l,55,33,77,99" or 155337799 to your
external, HyperCard will store the data as ASCII characters, and to recover the
same data you must access it as characters. You could read it as integers, but
the values would be very different. The function FunnyData below will return
12588 if you call it with the string "1,55,33,77,99" since Integer 1 is the first two
bytes, which are the characters "l" and","; interpreted as binary bits, these are
0011000100101100, which is the decimal number 12588. Leave out the commas
and it does the same interpretation on the characters "l" and "5", giving the
decimal number 12597.

function FunnyStuf f somenumbers

put charshandle(somenumbers) into myHandle

return integer 1 of handle myHandle

end FunnyStuf f

To access the numbers in a string you would need to extract them as character
strings first, as in:

Function NotSoFunny sornenurnbers

put NewHandle(O) into myArrayHand

repeat with i=l to the number of items in somenurnbers

put item i of somenurnbers into item i of handle myArrayHand

end repeat

return integer 1 of handle myArrayHand
End NotSoFunny

Pointers and Handles Inside the Macintosh

So far we have been concerned with using pointers and handles to access data
that we got from HyperCard, or constructed in our own scripts. Handles were
invented for the Macintosh ROM, but occasionally some ROM routine you call
wants a pointer, not a handle. That is, it expects you to give it as a parameter
the address of the data, not the address of a master pointer that has the
address of the data. Not generally a problem, since you can "dereference" the
handle by using the "@" operator and the result is a copy of the master pointer
(see the pointer arithmetic example above for an example of this). But, you
recall, the memory manager knows it has the only copy of the master pointer
(of course in this case that is not true). If the memory manager tries to move
your data while you have the handle dereferenced, you have the same prob
lem we discussed before, only this time the memory manager will not protect
you. But there is a Toolbox call that lets the memory manager know that you
are doing this and please don't move the data for a short time. The routine is
called HLock (short for HandleLock, since it locks the data down to its
current address in memory). When you finish with your copy of the master
pointer you must always unlock the handle using HUnlock so that the
memory manager is free to move it around again. If you don't unlock your
handles, why bother using handles at all? Besides, it is rude when your XCMD
is a guest in another program's house (in this case HyperCard's), not to
observe a certain etiquette. HyperCard does not like locked handles laying
around, and has been known to unlock them itself capriciously. Don't tempt
it.

But wait, the pointer arithmetic example at the beginning of this section did
not use HLock - the ReplaceChar script is simply getting and storing indi
vidual characters, and not calling the Memory Manager for any purpose.
Memory cannot move in this case so HLock is not needed. Many program
mers believe that it is always a good idea to lock a handle before doing

85

86

anything to it. That is not true. Locking handles unnecessarily may cause your
program to fail. With a few exceptions (such as Hand.And.Hand, as docu
mented in IM 1-376), you should avoid locking a handle that you are passing
to the ROM without dereferencing. For example, if you lock a handle before
sending it to SetHandleSize, the memory manager will be forbidden to
move it, even if it needs more bytes than is available at the current location;
the result is that you will get an "Out of memory" error while there may be
still lots of empty heap space available elsewhere. It is also not always neces
sary to lock a handle when you dereference it, but only if you are going to call
a Toolbox routine that may involve the memory manager. U you don't call any
Toolbox routines yourself, and you are not manipulating HyperTalk string
variables or chunk expressions (which Compileltf turns into memory manager
routine calls), then nothing can move your handle; locking and unlocking it
can only waste time. There is a list of routines that may move memory in the
back of Inside Macintosh Volume ID (also in the back of volumes IV ,V, and VI
for the newer routines). While you cannot always tell which routines are
called by Compileltf code, you can check the line information in the Debuglt
window to see if there are any "ROM/Libe" calls, which might therefore be
unsafe.

You can use handles and pointers for data that you create and stuff into the
freshly allocated memory, and you can use them to point to data you got from
another source. There are special considerations for each kind.

Inside Mac Data Structures

U you are building new data structures in memory, you have the problem of
getting the pieces of data into the right places. The pointer or master pointer
only points to the beginning of the block of memory, which is not much help if
you want to put data into the middle. If the data structure is defined in Inside
Mac and its field names are known to Compileltf, it is easy: you just use the
record field notation, as for example to get at the mouse location in an event
record. The words "record" and "field" refer to Pascal concepts, and have
nothing at all to do with the "record" operation in a tape recorder or
MacroMaker, and are only slightly related to the fields in your HyperCard
stack cards and backgrounds. A record is a data structure that has component
parts, which are called fields, somewhat as a card in your stack has fields.
Pascal fields are accessed only by name (using that little dot), and never by
number or "ID" (which means nothing in this context). Here is an example
where we allocate a pointer to 16 bytes for the event record, pass it to the
Toolbox routine EventAvail, then use the field name to access the parts:

put NewPtr(16) into EventRecPtr

get EventAvail(-1, EventRecPtr@)

put HiWord(EventRecPtr@.where) into rnouseVert

put LoWord(EventRecPtr@.where) into rnouseHorz

put EventRecPtr@.what into eventcode

DisposPtr EventRecPtr

if eventcode=l then return rnouseVert&","&rnouseHorz

Note that EventAvail (as well as GetNextEvent and WaitNextEvent) want
an actual event record, not a pointer, so we dereference the pointer once. If we
had used a handle, it would be necessary to lock it and dereference it twice:
the first dereference gets the master pointer, and the second actually gets the
record.

It is not possible for Compilelt/ to anticipate all possible record structures, and
even some from Inside Macintosh have been omitted. In these cases you must
get at the internals of your data block the hard way. There are several ways
you could do this. We already mentioned using handle or pointer chunks;
there is also the Pascalish array notation, and just plain pointer arithmetic. Or
you could define some new fields in the Custom Symbol Edit card of
Compileltl

First you must calculate the offsets from the beginning of the record to the
pieces you want, to get to those parts. Recall that a pointer is just a number
that happens to be the address of some bytes in memory. The event record, for
example, is 16 bytes long. When we call NewPtr, it returns the address of the
first of those sixteen bytes. To reach the where field (if it were not defined in
Compilelt/'s symbol table), you would have to add up the sizes of all the
pieces between the front of the record and that field. In this case there are ten
bytes in front of it, so the offset is 10. The what field is the first, so its offset is
zero; we can use the original pointer. The same example, using only pointer
arithmetic and not field names looks like this:

put NewPtr(16) into EventRecPtr

get EventAvail(-1, EventRecPtr@)

put EventRecPtr+lO into wherebyte
put HiWord(wherebyte@.longintType) into rnouseVert

put LoWord(wherebyte@.longintType) into rnouseHorz

put EventRecPtr@.integertype into eventcode

DisposPtr EventRecPtr

if eventcode=l then return rnouseVert&","&rnouseHorz

87

88

Note that we are still using record notation here, but with the pseudo fields,
longintType and integertype to get the right size of data. If you don't
use some kind of field name, Compilelt! will not know what kind of data
(byte? 16-bit? 32-bit?) to get from memory, and your results will probably not
come out right - if it compiles at all. Since where is defined as a Point, which
is two 2-byte numbers, we could also have written:

put wherebyte@.integerType into rnouseVert

but that would involve calculating a second offset for the horizontal part of
the mouse location:

add 2 to wherebyte

put wherebyte@.integerType into rnouseHorz

When the chunk offset is an exact multiple of the chunk size, we can also use
the array notation:

put EventRecPtr@.integerType[6] into rnouseVert

put EventRecPtr@.integerType[7] into rnouseHorz

Note that an offset of 10 bytes is only 5 two-byte integers. Since the integer
arrays start counting with 1 instead of zero, byte offset 10 is integer number 6:

Byte Offset

Integer#

Longlnt#

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1--2--3--4--5--6--7-- 8

1------2------3------4 ---

As we can see, it is not possible to get to offset 10 by subscripting Longlnts,
since 10 is not an exact multiple of 4. So you could not use array notation to
reach the where field of an event record. We leave as an exercise to do the
same thing using pointer chunks.

Note also - and this is important - that although we were willing to add 2 to
wherebyte, we did not add 10 to EventRecPtr. We could have, but then it
would not point to the front of the block in memory. If you give a pointer to
DisposPtr (or any other memory manager routine) that does point to the
beginning of its block, you will confuse it so bad that a bomb is inevitable. You
can make all the copies of a pointer you want, with whatever offsets added to

them, but be sure to save an original (unmodified pointer or copy) for sending
to the memory manager routines. This applies also to setPtrSize,

GetPtrSize, and the corresponcling handle manipulation routines.

Now, where did the offset 10 come from? In Inside Macintosh, Volume I, page
264 (JM 1-264 for short), there is a description of the EventRecord. The first
offset is always zero. Then you add the size of that field to get the next offset,
and so on. If a field is itself a record, then you must add up the sizes of all the
fields in the inner record to get its size. Note that the offset for everything
except 1-byte components must be even, so add one if necessary to take the
offset up to an even number. Generally, Inside Macintosh does not throw you
any curves like that. The size of each of the most common data types follows:

1 Boolean
1 Signed Byte
2 Char (actually only one byte, but Apple's compiler allocates

two unless it's "packed", so the rest of us have to go along
with that particularity)

2 Integer
4 Longlnt
4 Fixed
4 Ptr (or any other pointer)
4 Handle (of any kind)
4 Point
4 OSType
8 Rect
8 Pattern
12 "SANE" extended floating point number (really 10, but

Compileltl allows for 12 in its code)

Compilelt/ includes special names (accessible from the Options card) that
make it easy for you to access these data types.

Arrays in Inside Macintosh structures are slightly more complex. You calculate
the size of the component, add 1 if necessary to make it even (unless it is just
one byte and the array is "PACKED"), then multiply by the number of ele
ments. Sets allocate only one bit for each element, so count the number of
elements, divide by 8, and round up to the next even number of bytes. You
should now be able to calculate, as an exercise, the size and offsets for a
BitMap (IM I-202). Then try the Gra£Port on IM I-203, and see if you get 108
bytes.

89

90

Once you understand how to calculate the offsets to the internal parts of an
Inside Mac data structure, you can easily add any names you like to the
Compileltf symbol table, You still have to calculate their offsets correctly, but
once you do that, they go into the symbol table and you can safely forget
about them.

More About String Handles

All HyperCard variables are accessed by handles. Compileltl knows this and
hides the details from you. You refer to a variable x as in:

put bg field 3 into x

and Compileltf will ask HyperCard for a copy of the string that contains the
data in the field. HyperCard will return a handle, and Compileltf will make
sure that your XCMD takes good care of that handle. If you make a copy of
the variable in HyperTalk, for example:

put x into y

Compileltf will make a copy of the handle - not a copy of the whole string,
so it is not unnecessarily copying large numbers of characters - and put a
copy of the handle in the variable called x also into the variable called y.
Suppose field 3 has the string "The quick brown fox" and that x now contains
a handle that points to a copy of that string in memory. When we put x into
y, y now has a copy of the same handle, pointing to the same string (in the
same bytes in memory). Now it gets tricky. Let's say you change the value
in y:

delete second word of y

What happened to x? Answer: nothing. Compileltl noticed that you were
calling for y to be modified, and saw that there was another handle pointing to
the same string (meaning some variable that obviously should not be modified
at the same time), so it makes a copy at that time, and modifies the new copy,
leaving the new handle in y. Variable x still has the handle to the old (un
modified) string. You can watch this happen in Debugit! Type the following
short script into Compileltl and compile it with Debuglt! checked on:

on LookAtHandles
put "The quick brown fox" into x
put x into y

debug checkpoint -- stop here and look

delete second word of y

debug checkpoint -- look again

end LookAtHandles

Run this XCMD until you hit the first breakpoint, then option-click on the y

variable line. The first eight bytes of the hex display are the handles respec
tively in y and x; they are identical because they point to the same physical
string. Step over to the next breakpoint and look again. Now y has a differ
ent handle in it.

There is a little bit of overhead in keeping track of which variables have what
handles, but for strings longer than a hundred characters, the savings by
copying only handles, not strings, should pay off. But all this involves no
effort at all on your part. You don't even need to be reading this to take
advantage of string handles this way.

The problem is that when you ask for a chunk expression of any kind,
Compilelt/ cannot give you the original string with the excess characters
removed if there are other variables holding handles to the same string. So it
makes a copy of the string, cut down to size. The only exception is if you ask
for a one-character chunk and do not put it into a variable. Then Compilelt/
will just grab the single character. Here are several ways to access the same
single character in a string, and the time (in seconds) it takes to do it 100,000
times on a Mac Ilci with a 16-character string in x:

(A) 366

put char i of x into y

if y="A" then donothing

(B) 1,166

put char i to i of x into y

if Y="A" then donothing

(C) 1.5

if char i of x y then donothing

91

92

(D) 1.5

if char i of x ="A" then donothing

(E) 1.5

if CharToNum(char i of x) = 65 then donothing

Examples (F) to (H) all assume the following line is just before the timing loop:

put CharsHandle(x) into hx

(F) 0.25, almost as fast as empty loop!

put hx@.ptrtype+i-1 into h
if CharToNurn(h@.chartype) 65 then donothing

(G) 0.25

if char i of handle hx "A" then donothing

(H) 0.25

if hx@@.chartype[i-1) "A" then donothing

(I) 0.25

if char i of handle hx = y then donothing

Example (A) extracts a character from the string then converts the isolated
character into a string to store in string variable y. 1his conversion requires
the additional handle management for the new string in y. Example (B)
makes a new handle and then copies the selected character chunk into it. It
just happens that only one character is in the selected chunk, but Compileltl
assumes from the form that there may be several characters, so a more general
form is used.

The remaining examples use the character as extracted, without storing it into
a string variable. No conversion is needed, and they are quite fast compared to
(A) and (B). Comparing the character to a constant is about the same speed as
comparing it to a variable or running it through CharToNwn to change it to a
number. Note that (A) and (B) are true HyperCard case-insensitive compares
using the ToolBox international string compare function, while (C)-(I) com
pare for exact match using a few machine instructions. That is some of the
reason for the extra speed.

What we have done in (F) is taken a copy of the handle to the string, then used a
pointer scheme to access the characters. While every HyperTalk string is
maintained as a handle to a block of memory, Compileltf hides this representa
tion from the casual observer. Other handles (not HyperCard strings) can be
processed using the Toolbox routines and pointer access, and the programmer
is responsible for knowing what he is doing. CharsHandle is a data structure
defined in Inside Macintosh as a handle to a block of characters - exactly a
HyperCard string - but Compileltf will not do the usual handle management
on it. The first line of this example sneaks a copy of a string variable handle out
to let you do ordinary handle operations on it. Making this copy is a little costly
in time, so you should make only one copy and use it for all your manipula
tions. Note also that although this is a proper handle, you should not dispose it
because Compileltf still is using its own copies of the same handle. You can do
some other tricks, however, as we shall see. Dereference the handle once (one
"@")and you have a pointer to the first character in the string. You can add a
character offset to that pointer to point to any character in the string, or else use
the array notation (H) for the same effect. Note again that in true computer
style,. the first offset is O; HyperCard sometimes spoils us with human counting
systems that start at 1. That means that to access the same character as the other
examples, we must subtract 1 from the offset. This is also true of the array
subscripting form (H), but only in the case of characters (following the lead of
Inside Mac's CharsHandle data type); other array types follow the Pascal (and
HyperCard) conventions of numbering from 1. Using the pseudo-type chartype
in both cases, we get one byte from the string. There is no checking for a legiti
mate offset, so if you run off the end of the string you get garbage, not empty as
in the other examples. This also makes the previous three examples run a little
slower, since they must count the number of characters in the string to see if i is
greater or less. That takes time. If you know how big the string is (one call to the
function length is sufficient), you can do your own checking once instead of
on every character access.

All that may be all well and good for comparing characters, but what about
doing something with the characters? If you want to operate on individual

93

94

characters, your best bet is to extract them as in example (E) or (F), converting
them immediately to numbers by means of CharToNum, then work with the
numbers after that. Numbers are extremely fast in the Macintosh CPU; charac
ter strings are rather slow. If you want a string of several characters, you might
find it faster to examine the characters one by one to determine the starting and
ending offsets, then use one chunk expression to extract that substring all at
once. Thus you are only making one additional copy of the string.

If you are working with small chunks of a very large string variable, you
would like to avoid Compilelt!'s nasty habit of examining the whole string to
take a chunk out. There is a way, using Toolbox routines BlockMove and
Munger. There are two situations where this can help: the most important is
extracting a chunk with the least amount of character shuffling, but you can
also can insert or delete a few characters without making a whole copy.

Let's say you have a handle hand for a large block of text in memory. You
have cleverly passed only the handle (as a number) back and forth from your
stack script to the XCMD, so the characters themselves are never touched
unnecessarily. Now you want an XFCN to return the nth line from this giant
string. Here's how it might work:

function getnthline hand,n
put hand+O into ht -- convert to number only once, here
put n+O into nth -- ditto

Hlock ht -- not for search, but needed before copy

-- first find the nth line by counting return characters
put ht@.ptrtype into pt -- use this to step thru array,

repeat while nth>l -- looking for nth line ...
put CharToNum(pt@.chartype) into thechar -- is a number!

if thechar=O then -- end: there is no nth line
HUnlock ht -- don't forget this

return empty

else if thechar=13 then subtract 1 from nth --13=return

add 1 to pt
end repeat

put pt into start -- save start of nth line
-- now count the number of characters in that line
put CharToNum(pt@.chartype) into thechar
repeat while thechar>13 -- look for end of line or string

add 1 to pt

put CharToNum(pt@.chartype) into thechar

end repeat

-- copy the line out into HyperCard-style string

put pt-start into thesize -- = length of the line
put "anything" into astring -- create a string variable
put CharsHandle(astring) into strhand -- get its handle
SetHandleSize strhand,thesize+l -- 1 byte for null at end

HUnlock ht -- safe now: BlockMove does not move handles

if thesize>O -- don't bother if no bytes to move
then BlockMove start,strhand@,thesize -- copy line to var
put NumToChar(O) into strhand@@.chartype[thesize] -- null
return astring -- with new size and new data in it!

end getnthline

There are several points that you should pay attention to. First, after deciding
how many characters to copy into the return string, we must be careful to put
a null character at the end. HyperCard and Compileltl normally do that
automatically for us with ordinary strings, but this is behind their backs.
Second, the string variable astring had to be initialized with something to
tell Compilelt! that it is a text variable (not a number or whatever). Use a
string literal, not another string variable, because that text will be replaced
when Compileltl is not looking. Finally, when we create the string variable
astring, and when we change its size by SetHandleSize, we implicitly or
explicitly call on the ROM memory manager to do these things. This can move
other handles around if necessary to make room, so if ht is not locked it
would invalidate our pointers pt and start. That's why we lock down the
handle. If we create the string astring and set its size to the correct value
before getting a pointer value pt, then locking would be unnecessary.
BlockMove is not a memory manager call, and it does not reposition handles.

Of course this technique can be adapted to any kind of text (or even non-text)
data. Note that at the end of this function we had three or four old pointers
laying around. That's OK, since the only data of interest is in the handle that
we carefully locked and unlocked, and in the return string. Extra handles and
pointers don't hurt anything as long as you don't try to use them after they
become obsolete. This is true only if the pointers and handles are derived from
data owned by some other program.

Who Owns This Handle

You should think of each handle as being "owned" by whatever program is
responsible for the data. In the case of resources from a file (any program or
file resources), the owner is the Resource Manager: it is responsible for allocat-

95

96

ing the space, and disposing of the handles when the file is closed. Strings that
came as parameters to your XCMD are owned by HyperCard, and it is respon
sible for disposing of them when your XCMD returns. HyperCard also takes
ownership of the string you return in the return command, and it owns some
of the strings passed to and from external windows. Compileltl (or rather the
XCMD it compiled) owns the strings you use as variables in your XCMD. It
also owns the copies of fields and global variables it gets from HyperCard.
You only own the handles you create by NewHandle or its equivalent. When
you call GetResource or another Toolbox routine that returns a handle to a
resource, you can make copies of the handle, and modify the data, and do
basically anything you like, but you must remember that the Resource Man
ager owns the data and all handles pointing to it are only "loaned" to you. Do
not dispose of these handles. Similarly, when you use CharsHandle to get a
handle to a HyperTalk string owned by HyperCard or Compileltl, you can
modify the data, you can make copies of the handle and even index into the
data by adding numbers to copies of the master pointer, but Compileltl will
assume it owns the data and it will dispose of the handle when your XCMD
exits, or when it has reason to believe the data is no longer being used.

How does ownership of a handle change? There are several ways. If you call
DetachResource with the handle of a resource, the Resource Manager
relinquishes ownership of the handle. You now own it, and you are respon
sible for disposing of it. On the other hand, calling AddResource sells a
handle you own to the Resource Manager, and you no longer own it. Obvi
ously you cannot call AddResource with a handle you got from
GetResource, because the Resource Manager already owns that handle -
unless you call DetachResource first. Similarly, you cannot honestly call
AddResource with a handle you got from charsHandle, because it is not
yours to sell. Compilelt! will fight the Resource Manager for it, and you may
not get the result you wanted (even if you don't get a bomb). If you have a
handle in x that you do not own, you can get a handle to a copy of the data in
a handle you do own by calling HandToHand with the handle x. If you
already own the handle x and call HandToHand, then you will own two
handles, but x will only have the new one. If you did not save a copy of x in
some other variable, that handle will be an orphan with no way to properly
dispose it, left rotting in the heap and taking up valuable space until you quit
from HyperCard. You can give a handle back to Compilelt/ with a call to
HypercardText. You can make Compilelt/ give up ownership of a string
handle by calling HypercardOwns on the string itself (not the handle). If
HyperCard really owns the handle (as for example in the case of strings sent
to or from an external window that does not use Compileltl's access code),
then you have succeeded in stopping Compileltl from fighting over it; if

HyperCard did not own the handle, then you stole it fair and square from
Compileltl (so you now own it). Another way you can get data into strings
that Compilelt/ owns is to create a handle by putting a quoted string into a
new variable in HyperTalk, then borrow the handle (using charsHandle to
get it) long enough to copy your own data into it, as we did in the example
above. You can SetHandleSize, Munger, and BlockMove data into
anybody's handles -within reason, of course.

What about changing the data of a handle? If you have two handles, x and y,

that some other program owns, and you want to move the data from one to
the other, how do you do that? For example, let's say Compileltl owns x and
the Resource Manager owns y:

put field "x" into varx
put CharsHandle(varx) into x

put GetResource("TEXT",1000) into y

You would like to change the data in the resource to be a copy of the data in
the field. Here are some plausible, but wrong, ways to try to do it:

put x into y -- y is now a copy of the
handle owned by Compileit!

-- the resource is unchanged, and
-- you have no handle to it.
put x@ into y@ -- NO! NO! NO!
-- Never change a master pointer (bomb)
put x@@ into y@@ -- Will change a few bytes in

-- the resource, but not the whole resource.

BlockMove x, y, length(varx) --
-- Bomb: changing master pointers again!
-- BlockMove wants pointers, not handles.
BlockMove x@, y@, length(x) -- good start, but y

is the wrong size, and the length of x will
-- be 6 or 7 (number of digits in a handle)

The right way, of course, is:

SetHandleSize y, length(varx)+l
-- the extra byte for a null at end
BlockMove x@, y@, length(varx)+l

-- no need to lock handles

97

98

It is often a requirement to put something into a chunk of a larger string.
When Compileltl sees that you are changing a chunk in a string, it will (if
necessary) make a working copy of the string, then call the Toolbox routine
Munger to do the insertion. If you know you don't need to keep the original
string around, you could call Munger yourself, and the result will be a little
over twice as fast. Of course for short strings the cost of making an extra copy
is small, but if you are working with 20,000 characters it could make a differ
ence of several seconds. Here is an example:

-- ticks for 1000 times on Mac IIci:

put x into char i to k of y
put charshandle(x) into hx

put charshandle(y) into hy

-- 25 ticks for 1000 times:
HLock hx -- required for hx (not hy)

-- since Munger calls memory manager

get Munger(hy,i-1,nil,k-i+l,hx@.ptrtype, length(x))

HUnlock hx

-- 56 ticks

put c into char i of y -- (c is one character var)

-- 43 ticks:
put "A" into char i of y

-- 0.1 ticks:
put hx+i-1 into h
put "A" into h@.chartype

Notice that putting a single character into a 1-character chunk is slightly faster
than putting in a string that will change the size of the result (but about the
same speed as replacing a chunk with another the same size); a character
constant is even faster. Using pointer arithmetic and the chartype pseudo-field
(or handle chunks, or array notation, both of which are about the same speed)
is virtually instantaneous by comparison.

It is easy to see that touching characters takes time - the more you touch, the
longer it takes. Every time you do something with a chunk expression,
Compileltl goes out and counts the number of characters (or words or lines or
whatever) in the string, which touches every character once. It will usually
also make a copy of the string, which touches each character a couple more
times. Doing your own string management will save a lot of this touching,
because you can eliminate unnecessary counting and copying that Compileltl

cannot safely omit. Of course it is not necessary to go to all this trouble unless
you are touching the same string thousands of times, such as within a repeat
loop. Note that if you were writing your XCMD in C you would have to do all
string manipulations the hard way, not just the ones in the inner loops.

Toolbox Calls with Text

The Macintosh ROM was designed to be used with Apple Pascal, so almost all
text information is passed as so-called "P-strings" consisting of a one-byte
length code, followed by up to 255 bytes of character data. Most of the
Toolbox calls take string parameters in such a way that Compileltl knows that
is happening and can do the necessary conversions. There are some excep
tions, like when a string is part of a larger data structure such as the title in a
ControlRecord (IM 1-335). If you had to build this record in memory from
scratch you would use the Str255type pseudo-field and pointer arithmetic to
get at it.

Although the ControlRecord fields are already in the Compileltl symbol table,
there are some situations where there are no defined record field names. An
example is resource types like the 'STR ' and 'STR#' resources. The 'STR '
resource is rather simple, since it is just a handle to a block of memory that
contains exactly one P-string. If you are going to create one of these, you must
be sure to allocate the right number of bytes, but Compileltl will copy them in
or out for you correctly:

on NewSTR thetext,theID,thename -- error checks omitted

put NewHandle(length(theText)+l) into thehandle

put thetext into thehandle@@.Str255type

AddResource thehandle, "STR •,theID,thenarne

end NewSTR

It's much trickier to do 'STR#' strings correctly- in fact they cannot be done
at all in standard Apple Pascal, which is why there is a [not in ROM] Toolbox
call to get them for you (see IM 1-468). Here is how you would do the same
thing with Compileltl:

99

100

function GetindString strListID,index -- returns theString

put GetResource("STR#",strListID) into ahandle
if ahandle=nil then return empty

put ahandle@.ptrtype into aptr

put index-1 into counter

if counter>=aptr@.integertype or counter<O then return empty

add 2 to aptr

HLock ahandle
repeat while counter>O

add CharToNurn(aptr@.chartype)+l to aptr
subtract 1 from counter

end repeat
put aptr@.Str255type into theString

HUnlock ahandle
ReleaseResource ahandle -- not necessary unless memory is tight

return theString
end GetindString

We leave as an exercise for the reader a script to construct a 'STR#' resource
from a variable (typically a parameter to the XCMD) containing a list of
strings, each on a separate line. Hint: the resource is 3 bytes longer than the
length of your HyperCard variable (assuming no return at the end of the last
line). Why?

Shared Variables

Once you understand the toolbox data structures, it is an easy step to telling
Compileltt about your own variables of a particular type. Compileltt does not
allow you to do this for ordinary local variables, but there is a special class of
variables that are not quite global (though we use the same word) and not
quite local (though they are as fast to access as local variables). Since these
variables are visible to and shared by all the handlers in a single compiled
script much as global variables can be shared by all handlers in all scripts, we
call them "shared variables." You can just name them on a global command
line before your regular handlers (but in the script being compiled), and
Compileltt will assign to them a data type that it determines from their usage.

The real power of shared variables comes from the ability to tell Compileltt
explicitly what data type they should be. This is particularly useful for making
small record structures (Events, Rects, BitMaps, file system Parameter Blocks,

etc.), and for forcing temporary variables to be type Character (one byte, not a
string!) or P-string (for repeated use with toolbox routines without conversion
or memory manager calls). The types you can use are anything that Compilelt
knows about (see the list below). With records and P-strings (type R and S)
you can also specify how many bytes they should be. Here are some examples
of shared variable declarations:

global rnyString:S[64] -- a short P-string

global aRect:R[B] -- a rectangle

global onech:Char -- a single character

global rnanyints:R[1024] -- a record full of integers

In the last example, you would access the individual integers of this record
using array notation:

put anurnber into rnanyints.integertype[i]

Note that accessing a shared variable record involves no pointers, so no
dereferencing operator is required (nor should it be used, unless you have an
array of pointers, or some such). You cannot use array notation to subscript
variable-sized structures like Records and P-strings; Compilelt/ cannot figure
out easily how to index them. One-, two-, and four-byte data can be
subscripted, though.

Allocating a pointer using NewPtr may require thousands or even (in a worst
case) millions of bytes to be moved to make room for it. Allocating a handle
using NewHandle typically does not move as many bytes of the heap, but if
you must lock it for very long, it could lead to heap fragmentation and even- .
tual program failure. Allocating space in shared variables costs almost noth
ing, and you don't have to dispose it when you are done. Shared variables are
allocated on the CPU stack, and they go away automatically when your
external returns to HyperCard.

Apple recommends that applications allow BK for desk accessories, so you
should try to keep your shared variable space down to 2K or less. However, if
there is sufficient memory available, Compilelt/ can handle up to 30K total
shared variables. If there is not sufficient memory, you will get a bomb, ID=28.
Unfortunately the space is allocated before you can test for the space, so it's
too late to prevent it. Be conservative, and allocate your big data in handles on
the heap, where you can control it.

101

102

Shared variables can be any of the following types:

l,L,P 4-byte integer or pointer or handle
S Str255 P-string, 256 bytes, or whatever size you specify
H HyperCard String Handle (the default if you don't specify a

type)
O,T 4-byte OSType string
B 1-byte Boolean (true/false value) allocated 4 bytes
C 1-byte Character (much faster than local string variables)
F 12-byte SANE number
R 32-byte record (unless you specify a different size)

The syntax for shared variables is the same as for HyperCard global variables
with two optional additions:

1. If the name is followed by a colon(":"), then the next non-space character
is used to specify the shared variable's data type.

2. If the shared variable is type Record, then its size is set to 32-bytes unless
it is followed by two brackets around a number; the number is the size in
bytes that will be allocated (e.g., aRect: Record [8]); similarly, you can
specify the length of a 5-type string if you want it less than 256 bytes.

Array Notation

Array notation eliminates the need for most pointer arithmetic (you'll still
need it from time to time). Array notation allows you to quickly access any
portion of a record provided the data in the record is one of the fixed-length
data types Compilelt! knows about. Consider the common requirement of
SFGetFile for an array of 4 OStypes (each OSType contains the 4 character
code used to identify a type of file, SFGetFile uses this array to filter out
unwanted file types from its display). Here is how you would create such an
array using array notation and shared variables:

global typeList:Record[16) -- 4 OSTypes x 4 bytes

function GetAFile ftypel,ftype2,ftype3,ftype4
put ftypel into typeList.OStype[l)

put ftype2 into typeList.OStype[2)

put ftype3 into typeList.0Stype[3]
put ftype4 into typeList.0Stype[4]
-- etc.

You could also write:

global typeList:Record[16]

function GetAFile

repeat with i = 1 to 4
put param(i) into typeList.OStype[i)

end repeat

-- etc.

or:

global typeList:Record[16]

function GetAFile paramtypes

repeat with i = 1 to 4
put item i of paramtypes into typeList.OStype[i]

end repeat

-- etc.

You can mix and match quite a bit with record fields and arrays, as we have
already seen in the examples above.

103

104

CREATING XWINDOIDS

This chapter discusses how to write code for xWindoids. xWindoids are
XCMDs that create and "own" a window. HyperCard automatically tells
xWindoids about various system events that apply to them such as
mouseDowns, updates, menubar clicks, etc. Examples of xWindoids are the
variable watcher and script editor. xWindoids are a new feature of HyperCard
2.0 and any XCMDs that you create using the techniques in this section will be
incompatible with earlier versions of HyperCard.

This chapter is for advanced users of Compilelt! and assumes basic knowl
edge of pointers and handles, the ROM Toolbox, and the concept of event
driven programming.

It is assumed that you have the HyperCard 2.0 Script Language Guide or similar
reference which documents the "HyperCard 2.0 Extended XCMD Interface."
This section documents only the Compilelt! implementation of the new
interface. A summary of the entire extended XCMD interface is located in the
appendices.

Compile/ti can be used to create for HyperCard 2.0 xWindoids (external
windows) that respond to events, support reentrancy, and have properties
that you can get or set from scripts. Compilelt! simpifies the code you need to
write to support an xWindoid by taking its cue from HyperCard and treating
events like system messages (like the mouseUp handler you might write for a
button).

In other development systems, you are generally required to check for a
negative parameter count and then determine what kind of event HyperCard
is sending you. Once you know what kind of event is happening in your
window, you have to retrieve the needed parameters and branch to a routine
that deals with the event.

Compilelt! simplifies this process by providing a series of reserved handler
names. All you have to do is include handlers for the specific events you wish
to deal with. Compilelt! will automatically ensure that those routines are
called directly with the needed parameters when those events occur, and
ensure that events you do not specifically wish to deal with are handled in a
default way.

105

106

The structure of an xWindoid script is simple. The first handler is like any
other external and is used to create the window or palette using some Hyper
Card-2.0 specific callbacks and normal Toolbox Window Manager calls. Below
the first handler are handlers, named with reserved Compileltf event handler
names, which deal with the specific events.

The reserved event handler names are:

on InitializeMessageWatcher
on InitializeVariableWatcher
on InitializeScriptEditor theScript,windowNamePtr,TalkObjectPtr
on InitializeDebugger theScript,windowNarnePtr,TalkObjectPtr

on idleEvent eventinfoPtr

on rnouseDownEvent eventinfoPtr
on keyDownEvent eventinfoPtr

on autoKeyEvent eventinfoPtr
on updateEvent eventinfoPtr
on activateEvent eventinfoPtr

on app4Event eventinfoPtr

on OpenEvent eventinfoPtr
on GiveUpEditEvent eventinfoPtr
on HidePalettesEvent eventinfoPtr
on ShowPalettesEvent eventinfoPtr
on EditEvent eventinfoPtr

on SendEvent eventinfoPtr

on MenuEvent eventinfoPtr
on MBarClickedEvent eventinfoPtr

on ShowWatchinfoEvent eventinfoPtr

on ScriptErrorEvent eventinfoPtr
on DebugErrorEvent eventinfoPtr
on DebugStepEvent eventinfoPtr
on DebugTraceEvent eventinfoPtr

on DebugFinishedEvent eventinfoPtr

function GiveUpSoundEvent eventinfoPtr
function CursorWithinEvent eventinfoPtr
set cursor

return true if ok
return true for HC to

In order for Compileltf to recognize that your script will be an xWindoid, you
must follow a few rules in how you use the reserved event handler names:

1. You must use the handler names as shown above.

2. You must use the exact same number of parameters as shown above. The
parameters can have any name you wish as long as the number of param
eters is the same.

3. You must NOT call any of the reserved handlers from other handlers in
your script, although reserved handlers can call other non-reserved
handlers.

After a compile, any event handler that Compileltl recognized will be listed at
the bottom of the analysis card.

Below is a simple xWindoid shell showing the structure for a simple
xWindoid. The events SetPropEvent, GetPropEvent, EditEvent, updateEvent,
OpenEvent, and CloseEvent all require special handling, so they are shown
with sample code in the shell.

xWindow source code shell for Compileit!

on myXwindow
This is where you would put your code to create the xWindoid
Normally, you'll use either the GetNewXWindow or NewXWindow

callbacks to create your xWindoid.
end myXwindow

-- this handler is called when the user types

-- "set <property> of window <windowName> to <propertyValue>"
function SetPropEvent eventinfoPtr, propNamePtr, propertyValue
if propNamePtr@.str255type = "whatever" then

get propertyValue -- and do something with it
else return true -- reject any other properties
return false

end SetPropEvent

-- this handler is called when the user types

-- "get <property> of window <windowName>"
function GetPropEvent eventinfoPtr, propNamePtr
-- return property value or exit if none

if propNamePtr@.str255type = "whatever" then return "itsvalue"

else exit GetPropEvent -- reject any other properties
end GetPropEvent

107

108

-- cut, copy, clear, or paste event while window has edit
on EditEvent eventinfoPtr
if eventinfoPtr@.what=xEditUndo then --undo event
else if eventinfoPtr@.what=xEditCut then -- cut event
else if eventinfoPtr@.what=xEditCopy then -- copy event
else if eventinfoPtr@.what=xEditPaste then paste event

else if eventinfoPtr@.what=xEditClear then -- clear event

end EditEvent

-- your window needs to be redrawn for some reason
on updateEvent eventinfoPtr

GetPort myWindow
BeginUpdate myWindow
-- redraw your window here

EndUpdate myWindow
end updateEvent

your window just opened, this is the first event your windo~

will receive
on OpenEvent eventinfoPtr
-- if you want any null events, include the following line:

SetXWidleTime eventinfoPtr@.eventWindow, someTicks
-- someTicks is a number.

-- to support reentrant code (good idea), include this line:
XWAllowReEntrancy eventinfoPtr@.eventWindow, true, true
-- This next line is generally a good idea:

XWAlwaysMoveHigh eventinfoPtr@.eventWindow, true

any other setup code should go here

end OpenEvent

-- HyperCard is requesting permission to close your window,

-- HyperCard cannot quit if you return false.

function CloseEvent eventinfoPtr
-- put any code here to save data, etc. before closing
return true -- if ok for HyperCard to close your window

end CloseEvent

The source code for a simple xWindoid with several properties is on the
Examples card in the Compileltt stack.

For reference, here is the structure of the eventlnfo parameter block. The
eventlnfoPtr parameter, shown above, points to this block:

EventinfoPtr = RECORD
event: EventRecord;
eventWindow: Windowl?tr;
eventPararns: ARRAY[l .. 9] OF Longint;
eventResult: Handle;

END;

To get, for example, the second element of the eventParams array, just write:

put EventinfoPtr@.eventPararns.LongintType[2] into rnyVar

You should use either the NewXWindow or GetNewXWindow callbacks to create
your xWindoids. Always use the CloseXWindow callback to dose your
xWindoid (this will cause HyperCard to issue a CloseEvent message for your
window). Never use any of the following Toolbox routines to dose an
xWindoid:CloseWindow, DisposeWindow, CloseDialog, or
DisposDialog.

What Else You Should Know About the XCMD Interface

In addition to the way Compileltl handles the creation of xWindoids, there are
several other differences you should know about Compileltl and the Hyper
Card 2.0 XCMD interface. The callbacks that are different or not needed are
discussed below.

In the Script Language Guide, the first parameter to each callback is shown as
paramPtr, because the Pascal .o file does not have ready access to that pointer.
Compileltf knows about this pointer already, so it is completely unnecessary.

There are a few other cases where HyperTalk as compiled by Compileltl is
somewhat simpler than Pascal. These are shown below. Note that there are
more symbols for HyperCard 2.0 than are listed here. Several Compileltl -
specific symbols are documented below, as they are also of use in working
with the XCMD Interface.

BoolToStr

You get the same effect whenever you put a true or false value (perhaps the
result of a comparison) into a string variable. Instead of:

109

110

BoolToStr theboolean,thestring

just write (you get exactly the same effect, but faster):

put theboolean into thestring

entryPoint

This is the address used by the callback glue to jump back into HyperCard.
There is nothing useful you can do with it, since invoking any callback by
name automatically jumps to that address.

EvalExpr

This callback is used automatically by Compilelt! whenever you use the
function value (...).

eventResult

This record field is of value only if you are creating xWindoids in a non
standard way (i.e., you are not using the reserved handler names).
EventResul t is defined as a HyperCard ("H") zero-terminated string value, to
be used when you get a xGetPropEvt event. If you don't do anything special
to the value you put there, Compilelt! will dutifully dispose the string before
returning, which will confuse HyperCard no end (and probably bomb). The
command HyperCardOwns (documented below) will properly instruct
Compilelt! to relinquish ownership of the string handle so it works correctly.
Be sure to use HyperCardOwns on all xWindoid property values, both when
you get them from HyperCard, and when you send them back. (Compilelt!
does this automatically if you use the reserved handler names.)

ExtToStr

This callback is used automatically by Compileltf whenever you put a SANE
value into a string variable.

GetFieldBylD
GetFieldByName
GetFieldByNum
SetFieldBylD
SetFieldByName
SetFieldByNum

One of these callbacks is used automatically by Compileltl whenever you refer
to a field by ID, name, or number.

GetFieldTE
SetFieldTE

Apple documents these callbacks as requiring a non-zero integer as an ID or
field number, or else a non-nil string pointer. Since HyperCard apparently
checks them in left-to-right order, you can just pass it any name (or"") for a
name when you wish to refer to a field by ID or number. Compileltl thus
expects to see a name or"" for the last parameter, and not a string pointer or
nil.

GetVarlnfo

Apple gives you both a handle and a Str255 copy of the variable text (assum
ing it will fit). In Compilelt!, these are merged into one parameter, so all you
have to do is put a local variable name after the isGlobal parameter, and
that variable will receive the requested value. Be sure to initialize the variable
by putting something into it first:

put • • into theValue

GetVarinfo handlernum,varnurn,varnarne,isGlobal,theValue

HyperCardOwns

Sometimes HyperCard sends an external window a zero-terminated string
handle and expects the external to dispose it properly when it finishes with it;
other times HyperCard plans to dispose it. In the Good Old Days this distinc
tion was fairly clear: parameters and XFCN return values were disposed by
HyperCard, and everything else (i.e., the handles used in callbacks) were
explicitly the responsibility of the external. Compileltl knew about this and
did the Right Thing. All that has changed with HyperCard 2.0. If you use the
reserved handler names in your xWindoids, then Compilelt! will take care of
this for you, otherwise you must handle the situation. Use Hypercardowns

on each xWindow property value you get from or send to HyperCard (be
cause HyperCard will be disposing those handles), and not otherwise.

The Hypercardowns command is also useful in another, more common
situation. Suppose you are creating an xWindoid that will accept some data in
parameters when it is first called and you want that data to stay around across
events . The recommended place to store data across events is in your

111

112

window's RefCon field (actually you would store a handle to your data in the
RefCon). The following script fragement illustrates the technique:

global arect:Record(B] -- temporary rect structure

On MyWindow X
put X into data -- convert param into local

put charsHandle(data) into dataHandle -- get handle to local
HyperCardOwns dataHandle -- assume responsibilty for the handle
setRect arect,100,100,300,300

-- create the window
get NewXWindow(arect,"Untitled",true,O,false,false)

if it is not nil then selectWindow it -- activate it
SetWRefCon it,dataHandle -- store datahandle in the RefCon

field
of the window record

end MyWindow

on OpenEvent eventinfoPtr -- first event the window receives
SetXWidleTime eventinfoPtr@.eventWindow, 0

XWAllowReEntrancy eventinfoPtr@.eventWindow, true, true

XWAlwaysMoveHigh eventinfoPtr@.eventWindow, true
-- retrieve the handle
put GetWRefCon(eventinfoPtr@.eventWindow) into dataHandle
-- do something with the data in datahandle

end OpenEvent

HyperCardText

This function tells Compileltl that the handle you give it as a parameter is
really a string, so it takes ownership and treats the handle as an H-type string
like any other string value. If you also send the resulting string variable
(before doing anything to it) to HyperCardOwns, then Compileltl will be
careful not to dispose it when your XCMD exits.

paramCountX

Because HyperCard has otherwise defined the function, paramcount, this
field is spelled slightly differently. Note that Compileltl will give you the
contents of this field anyway if you use the HyperTalk function pararnCount.

PasToZero

You get the same effect whenever you put a Str255 value into a string variable.

PrintTEHandle

It's unnecessary and tedious to construct a string pointer for the header string
in this callback. Just give it the string directly:

PrintTEHandle hTE,"Sorne header this is"&&pageno

result><

The result has a special meaning in HyperTalk, so this field has been
renamed. Ordinarily you only need to look at this field for function callbacks,
since command callbacks give you its value in HyperTalk's the result.

RetumToPas

You can get the same effect by writing:

put first line of whatever into rnystring

return Value

This field is where an external puts its return value when it returns to Hyper
Card. If you put something there, Compileltl will smash it with its own return
value (whatever expression value you give the final return command, or
else nil if you don't exit with a return).

ScanToZero

You can get the same effect by writing:

get the length of whatever

113

114

SendCardMessage

This callback is used automatically by Compileltf whenever you use the do

command.

GetGlobal

SetGlobal

These callbacks are used automatically by Compileltf whenever you use a
HyperTalk global variable in your script.

String Equal

You can get the same effect by writing:

... something~ somethingelse ...

String Length

You can get the same effect by writing:

... the length of whatever ...

StringMatch

This callback is used automatically by Compileltf whenever you use the
offset function.

StrToBool

You get the same effect as this callback whenever you use a parameter or
global or string variable as a boolean.

StrToExt

This callback is used automatically by Compileltf whenever you use a param
eter or global or string variable as a number that must be converted to SANE.

StrTolong
StrToNum

You can get the same effect as these callbacks (and probably slightly faster) if
you just write:

put stringvalue+O into thenwnber

GetXCmdPtr

This function returns the xcmdPtr.

ZeroToPas

You get the same effect as this callback whenever you put a string value into a
Str255 field or toolbox global or ROM call parameter.

115

116

APPENDIX A
COMPILE/Tl AND

OTHER APPLICATIONS

A number of software manufacturers have incorporated into their programs
the ability to use externals created for HyperCard. Other manufacturers have
extended the abilities of their externals to go beyond the abilities given to
externals by HyperCard. Since Compilelt/ is a tool for creating externals, it is
not so closely tied to HyperCard that you are limited to creating externals for
HyperCard with this product. Indeed, externals created by Compilelt! can be
used in any product that accepts HyperCard externals. There are, however, a
few things to keep in mind when writing externals for use with other pro
grams:

1. Be careful not to use stack- or HyperCard-specific callbacks. If you are
writing externals for use in non-HyperCard type programs, a number of
the callbacks can fail. Don't refer to such things as cards, backgrounds,
and stacks. Fields and buttons might give you some problems too.

2. Some environments may include built-in functions that can take optional
parameters. These will not be compiled correctly with Compileltf You can
sometimes avoid problems in these cases by supplying dummy param
eters such as empty, or by creating separate symbols for the different
numbers of parameters.

3. Externals compiled with the HyperCard 2 option may require HyperCard
2.0 orlater. Currently, Exit to Hypercard and IternDelirniter are the
only features this option enables. Future versions of Compilelt! may
enable additional symbols that will result in HyperCard specific code.

4. xWindoids require the HyperCard 2.0 Extended XCMD Interface. Many
programs that support externals do not support this extended interface.

Debuglt! is not tied to the HyperCard application nor is it an xWindoid so it
should work in many environments beyond HyperCard. Specific problems to
watch for are documented in the Debugging section of Chapter 3.

117

118

SuperCard

SuperCard is generally very amenable to HyperCard externals, and most that
we have tested work fine. SuperCard features an enhanced set of callbacks,
giving you access to SuperCard features not available in HyperCard. These
enhanced callbacks are documented in SBS Tech Note #6, which was included
with SuperCard. If you wish to use these new callbacks, or to compile
SuperTalk scripts that use SuperCard-specific commands (such as Paste or
set Window), you will need to use the Other Options facility of Compileltl to
install SuperCard support into Compileltl's Symbol table.

Compileltl also works as a SuperCard project. See the appendix SuperCard and
Compilelt/ for instructions on how to convert Compileltl and other com
ments.

APPENDIX B
SUPERCARD AND COMPILE/Tl

This appendix explains how to use Compileltf with Silicon Beach/ Aldus's
SuperCard, including how to convert Compileltf into a SuperCard project.

Compileltf supports SuperCard 1.5. Future and previous versions of Super
Card may have more and/or different limitations than those discussed below.
Also, the process of converting Compileltf into a SuperCard project, as
described below, may be different for versions of SuperCard greater than 1.6.
Although Compilelt! will compile under SuperCard 1.0 once properly con
verted, some of the scripts that depend on SuperCard 1.5 features may need
modification to complete the conversion. We assume that all SuperCard users
have already upgraded to the latest version.

Whether or not you choose to convert Compilelt! into a SuperCard project,
most externals that you create can be imported into SuperCard via the Import
Resources command in SuperEdit. You also do not need to convert Compilelt!
to use any of the SuperCard specific symbols (commands, callbacks, proper
ties, etc.) although externals using these symbols may only work when
imported into SuperCard.

The process of converting Compilelt! into a SuperCard project is simple. The
steps are:

1. Make sure you have a backup copy of the Compilelt! disk.

2. Start with a fresh copy of Compilelt! in HyperCard 1.2 format.
(Compileltf is shipped in this format. Super Edit may fail if you try to
convert a HyperCard 2.0 stack.) You may want to place Compilelt! in a
new folder so that it is easy to find when it comes time to locate it from
SuperEdit (SuperEdit will display all HyperCard stacks regardless of
format).

3. Open SuperEdit, click Cancel in the initial Get File dialog that appears,
and choose Convert Stack ... from the File menu. Select Compileltf

4. When asked by SuperEdit, assign a name for the converted version of
Compilelt! (we recommend "Compilelt! 2.0.SC").

119

120

5. SuperEdit will display a dialog asking for the type of resource conversion
you want performed. Select Custom and in the dialog that appears,
uncheck the checkbox in the bottom right. SuperEdit will begin the
conversion process which takes 3-5 minutes on a Macintosh II class
machine.

6. When the conversion is completed, choose Run from the File menu (or
type Comrnand-R). Do NOT make any changes to Compilelt! at this point.

7. Compileltl will open in SuperCard and sense that it has just been con
verted. It will ask you to locate a HyperCard version of itself (best to select
the same copy of Compileltl that you selected to start the conversion
process in the first place). Compilelt! will complete the conversion process
for you (shuffling appropriate resources into the data fork, changing some
of its icons, and various other "tweaks"). When it finishes, you'll be able to
begin compiling scripts. You may want to go to the SuperCard symbols
card (available via the Other Options ... button) and install any or all of the
SuperCard symbols at this point. H you want to make further modifica
tions to the new SuperCard project, it is now safe to do so (at least insofar
as not interfering with the conversion process).

When converted to a SuperCard project, Compilelt! will automatically install
any externals you create into the data fork of the projects you select. This is the
correct thing to do under SuperCard (under HyperCard, resources are stored
in the resource fork of a stack).

H for some reason you want Compileltl to install into the resource fork of a
project, you'll need to modify the window script. Some reasons why you
might want to do this are: 1) you want an external installed in the sharedfile,
or 2) your external will be called directly by another external (see Custom
Symbol Edit) rather than from a script. To force Compilelt! to install into the
resource fork of a project, locate the line in the "Prelude" function in the
Window script that begins with:

if superc then
if rnynarne is not empty then put ": :go"&"e&rnynarne ...

Remove (or comment out) the line with the two colons. The colons tell
Compilelt! to install into the data fork. H they are gone, Compileltt uses the
same installation routines that it would use in HyperCard. Remember to put
the line back if you want subsequent compiles to install in the data fork again.

If you do this very often, you might consider modifying the script to look at a
checkbox that lets you choose the destination without re-opening the window
script each time. Much of Compilelt! is intentionally left as scripts so that you
can customize it to your own requirements.

Several SuperTalk commands and functions take optional parameters (e.g.,
Offset and LineOffset). Optional parameters are generally supported by
Compileltl only in text callbacks that are not installed in the symbol table.
Note that Lineoffset compiles to a text callback, so it can be used only with
global variables or fields (because it only makes sense with data that contains
multiple lines, and returns cannot be passed in text callback parameters).
Offset is a Compileltl intrinsic and only works with the optional parameter
form if you install it from the SuperCard Names card.

The HyperCard 2 option on the first card in Compileltl has no effect in
SuperCard, and is grayed out.

Exit to Supercard and Exit to HyperCard cannot be used in SuperCard.

Properties of SuperCard such as wordDel and IternDel do not have any
effect INSIDE an external although they will have an effect in certain callbacks
(mostly text callbacks). This is also true under HyperCard but presents much
less of a problem since most of HyperCard's global properties do not directly
affect data.

Compileltl does have one global property of its own (rternDelirn) which
closely parallels one of the most common SuperCard global properties.
IternDelirn allows you to change the delimiter used to separate items, to some
single character value that you specify (the default value is a comma). The
IternDelirn property only affects data inside an external and has no effect on
callbacks. You can set the Compileltl IternDelirn property to match
SuperCard's IternDel property in either direction:

set the iternDelirn to the IternDel

set the iternDel to the iternDelirn

set Cornpileit! 's iternDel

set SuperCard's iternDel

You should also be aware that you cannot refer to objects that are not on the
current card. Statements like put 10 into field 1 of card 10 of window

s will generate a compiler error.

121

122

APPENDIX C
COMPILED VS. UNCOMPILED

HVPERTALK

This appendix discusses aspects of compiled HyperTalk that are different
from uncompiled HyperTalk, and covers pitfalls you may encounter.

Mod and Div - Compileltl uses integer mod and div operators which are
slightly different from HyperCard's equivalent operators. Consider the
following statement:

put 1.5 mod 1 into x

HyperCard would put 0.5 into x while Compilelt! would put 0 into x. If this
matters to you, you can extract the fractional part of a real number using the
following technique:

put 1.5 - trunc(l.5) into x

Params, Param, ParamCount - These three functions return parameter
information for the current handler in HyperCard. Compiled, they return
parameter information for the whole external regardless of which handler
they appear in within it.

If your external performs a direct call to another external (whose name was
added to the symbol table with Custom Edit) then these functions in the called
external may return parameter information for the external that was called
from HyperCard (the first external in the chain). This condition applies if the
called external was compiled by Compileltl and does not use shared variables.
(Compileltl will not allow sharing between externals.)

Answer, Ask, Read, Convert - These four commands are text callbacks and
perform as expected with one slight difference: they modify the value of it
in the calling handler. If you need to preserve the value in it across calls to
externals that use any of these commands, you can incorporate the saveit

handler shown on the Examples card in Compileltf into your externals source
code. saveit is part of the "Rename" example which shows it how it should
be used.

123

124

Text Callbacks - Text callbacks cannot contain return characters. Consider
the following statement:

set the script of button 1 to x

where x is a local variable that contains a script. This statement produces no
result because the Set command is a text callback and x contains a return
character. Under these circumstances, the callback would fail.

The best way to understand this is to view your external as existing in a
separate world from HyperCard. Callbacks are a gateway through which your
external can communicate with HyperCard. HyperCard imposes certain
limitations on this communication gateway so that it can quickly interpret and
respond. These limitations are:

1. Callbacks must be all on one line (no return characters).

2. The total length of the callback, including both command and data, must
not exceed 255 characters (a P-string).

Global variables are special in that they can exist in both worlds at the same
time. If a particular callback in your external must be larger than 255 charac
ters and/ or contain return characters, use a global variable instead of a local
variable.

Min, Max, and Average -HyperCard will accept a maximum of only 64
parameters for these functions. Compilelt/ sets no such limit so you can pass
any number of parameters to these functions.

Do - In HyperCard, the Do command applies to the current handler. In an
external, the Do command applies to HyperCard, not to your external.
Consider the following script fragment:

repeat with i = 1 to 10

do "put 10+" &i &&"into var"&i
end repeat

In HyperCard, the Do statement above would create 10 new local variables
named varl-varlO, each initialized with a different value. Each of these new
local variables would be available immediately to the current script. This
statement would be meaningless in compiled HyperTalk because the Do

statement would cause the variables to be created in HyperCard rather than

inside the external - the variables would be created in a kind of never-never
land where you have no access. The only way such a statement would work
would be if you already had global variables with the same names in both your
external and in the HyperCard script that invokes it.

Global variables - If you use global variables in your externals, they must be
declared both in the script for the external and in the script that calls the
external. HyperCard version l.2x is an exception to this rule.

Accessing objects not on the current card - HyperCard does not allow
externals to access fields outside the current card, except by text callbacks
(which Compileltf will not generate automatically for that purpose). The
following statement works fine uncompiled but will generate a compiler error
if you try to compile it:

put x into field 1 of card 10

The work-around is to make the card that contains the object the current card
or to let HyperCard do the work for you using the Do command:

go to card 10

put x.into field 1

do "put"&"e&x"e&" into field 1 of card 10"

Case-Sensitive Compares - All string comparisons in HyperCard are case
insensitive (e.g., "a"= "A"). This is also true in compiled HyperTalk except for
single-character compares. Case-sensitive comparisons result in much faster
code. The following are considered single characters and will be case-sensitive
in compares:

1. A chunk expression referring to a single character (and not a range of
characters that happens to be of length 1), as in:

char n of x -- but not: char n to n of x

2. A HyperCard or Toolbox function that returns a single character:

NurnToChar (65)

125

126

3. A variable passed to a VAR parameter of type CHAR in a Toolbox rou
tine; markChar is a known character in the script containing this Toolbox
call:

GetitemMark myMenu,itm,markChar

4. A shared variable of type Character:

global myChar:Character

5. A string of length one, only if compared whole for equality to a known
character (and not merely to another string variable), as is yin:

if char 1 of x = y then ...

Chunk expressions are generally considered to be ordinary strings, and would
normally compare case-insensitive:

put "abc" into x

put "ABC" into y

if char 1 to 1 of x

true

char 1 to 1 of y then ... -- a A would be

Comparing a whole string to a known character will also be case-insensitive if
you use an ordering compare such as > or ::;;, These operators do not affect the
comparison of two known characters, which will still be case-sensitive.
Putting a single character into a variable is not enough to convince Compilelt!
that it is "a known character" on a subsequent line. (Compileltl does not
remember much from line to line.)

ltemDelimiter and ItemDelim - HyperCard 2.1 introduces a new property
called ItemDel imi ter that allows you to change the delimiter character used
to separate items in a string. Normally, the item delimiter is a comma as it has
always been in the past. By setting the itemDelimiter property to some
other character (e.g., set the itemDelimeter to colon) you can change
how items are viewed in a string.

Compileltl has special support for this property. If a script is compiled with
the HyperCard 2 option turned on then the following conditions apply:

1. Each time your external is called, the current value of the i temDelimi ter

property will be retrieved from HyperCard and will apply to strings
inside your external.

2. When you set or get the i temDelimi ter property inside your
external, Compileltf will respect the (possibly new) current setting.

3. Compileltf will NOT notice if the itemDelimiter property changes
outside your external (perhaps a text callback invokes an uncompiled
handler that changes it or you do a direct call to another external that
changes it), unless and until you do another get the itemDelimiter or
otherwise explicitly look at it again.

If you are not running under HyperCard 2.1 or you compile your script with
the HyperCard 2 option turned off, then i temDelimi ter is treated just like
any other text callback and has no effect inside your external. All is not lost,
though, because Compileltl includes its own similar property called
i temDelim, which works regardless of the external environment.

ItemDelim isjustlike ItemDelimiter exceptthatitONLYappliesto
compiled HyperTalk. It is not tied to any specific version of HyperCard. In
Debuglt!, the current itemDelim character is shown in the variable monitor
at the far left side of the line listing the result.

127

128

APPENDIX D
ERROR MESSAGES

If Compilelt! reaches a point where it cannot make sense of a script, it will
stop with a ''boing" and issue an error message. The message is inserted as a
comment line after the line currently being scanned on the script page, and a
dialog reports the next symbol on that line that has not yet been fully pro
cessed. The line where the error is detected will be highlighted. Often the real
error occurred some time before it was detected, or the error message may
appear irrelevant to the real problem. This is typical with most programming
language compilers. The possible error messages are listed here, with some
suggestions for curing each problem.

<symbol> is not a command

Compilelt! will not let you use a variable name or function name as if it
were a command. Neither will Hypei<:ard, but who asked. Perhaps you
misspelled a word? Check the installed names in the Name List card to be
sure you are not trying to use a ToolBox global or field name as a handler
name in your script.

'<symbol>' is not a variable name

The quoted symbol or name is in the symbol table or your script, but it is
not defined as a variable. It might be a Toolbox name, a constant, a record
field, or perhaps a handler in your own script. Compilelt! wants to see a
variable here.

'='expected in repeat with

Compilelt! expects that the next symbol after the variable name in a repeat
with construct should be an equal symbol (followed by an initial value
expression, etc.).

After 'add', 'to' is expected
After 'subtract', 'from' is expected
After 'multiply', 'by' is expected
After 'divide', 'by' is expected

Compilelt! is expecting the appropriate preposition separating the two

129

130

operands of this command. Perhaps there is something wrong with the
first operand, and Compileltf gave up too soon.

Callbacks not allowed here

Compileltf has a special flag to tell it that callbacks are not allowed. You
should not be using that flag unless you know what you are doing. If you
did not intend for this to happen, then perhaps your copy of Compileltf
has been corrupted, and you need to restore it from the master disk.

Can't access data structure here

Records are not allowed by Compileltf among your local variables. Use a
shared variable or a data structure on the heap. You also cannot use
structured variable components within a text callback. Access the compo
nent in a separate line, and put its value into a local variable, then use the
local variable in the callback command or function.

Can't access field that way

HyperCard has not told Compileltt how many fields there are, so we
cannot ask for the middle or last (or any) field. Please use a name, 1

\
number, or ID.

Can't add that
Can't subtract that
Can't multiply that
Can't divide that
Can't delete that

These commands all act on whole containers or chunk expressions that are
part of a container. You can't operate on an expression that is made up of
constants, function values, and/ or parts of them - where would the
result go?

Can't find a repeat for this 'next'

Compilelt! found a next command that was not followed by the word
repeat.

Can't get that address in AO

You can use the"*" operator in INLINE commands only for local vari
ables and handlers. Global variables, fields, and callbacks do not have an
address available.

Can't pass local variable to structure

Some ROM Toolbox routines require data structures greater than four
bytes for parameters; Compileltl cannot allow these to be local variables,
since there is no way to allocate the correct amount of memory for them.
You should find out from Inside Macintosh how many bytes are required
for this structure, then use NewPtr or NewHandle to allocate the space,
or else declare a shared variable of type Record the right size. If you use a
pointer or handle, be sure to dereference the pointer with @, or the handle
with@@, when you pass it to the Toolbox routine. If you are using a
handle, be careful that the Toolbox routine you are calling does not call
the memory manager, or, if it does, that your handle is locked before
passing it dereferenced. Better still, don't use handles for this.

Can't put there

The most likely cause for this error message is if you try to put something
into a chunk expression built up from a function or constant value (in
stead of a container). Even HyperCard won't let you do that.

Can't put there yet

Chunk expressions are not allowed on the heap. A future version of
Compileltl may allow this.

Can't tell if field access by name or number

This probably won't happen to you, since Compileltl now calls a library
routine to try to figure out whether the variable you gave it is a number or
a name. But we left the error message in just for old times' sake.

Can't understand where to put

You can put something into a variable or field or a chunk of a variable
or field, before or after a variable or field or chunk, or you can just
leave the destination off entirely and let HyperCard put the value into the
message box. Any other destination will not be understood by Compileltl

131

132

One possible cause for this error is if the expression to be put into the
destination is poorly written, so that Compileltf assumes it has reached
the end of the expression while there is still some left.

Cannot exit <symbol> from here

Compileltf found an exit command that does not correspond to the
current handler name nor a repeat loop of any kind.

Chunk expression expected

If you use one of the ordinal numbers (first, third, etc.), then
Compilelt/ expects you to follow it with a chunk expression.

Command or structure name expected

Every command must begin with a word that starts with some alphabetic
letter. Anything else is obviously an error.

Debugger name conflict

Compilelt/ knows about debug checkpoint and debug coderesource

commands, but not any other command that begins with the word
debug.

End of handler expected

Compilelt/ can't find the end of your handler. Perhaps the word end is
missing.

End of line expected

Except for if-then-else constructs, HyperTalk allows only one command
on each line. If the command appears to end before the end of the line, this
message will notify you that something went wrong on this line (though it
is likely that the error occurred much earlier than where it was detected).

End of repeat expected

After compiling the commands inside a repeat loop, Compilelt/ expects to
find an end repeat line. If it does not, it probably means that the current
line makes no sense as a command; this probably has nothing to do with
the enclosing repeat loop at all.

Exit to HyperCard only works in HyperCard 2

Compilelt! has no way to tell earlier versions of HyperCard to stop
running scripts. If you really want your external to be able to use this
command, check the Hypercard 2 checkbox on the title card.

Expected comma or ')' here

Compile/ti thinks it got to the end of a parameter in this function or
command call, but the next character does not make sense from that
perspective. Perhaps there is something wrong with the expression here?

Expected the word 'to' here

It does not make much sense to convert a container without telling
HyperCard what format to convert it to - perhaps you are using an
improper chunk expression that Compileltl choked on.

Expected the word 'in'

To count the number of chunks, Compileltl has to have you specify where
the chunks are. You do that by saying the number of <chunks> in
whatever.

Expecting the word 'field' here

HyperCard only gives XCMDs access to fields, not buttons or pictures, nor
cards or backgrounds themselves.

Expression value expected

This is the generic error for poorly written expressions.

Function parameter list must begin with '('

Compileltl recognizes the identifier immediately to the left of this symbol
as a function name (either built-in, or declared in this script, or else in the
ROM Toolbox). A proper function call has parentheses around the param
eters, or if there are no parameters, then empty parentheses. If you did not
intend this to be a function call, you might consider choosing a different
name to avoid the name clash.

133

134

Hexadecimal constants expected for INLINE

The INLINE command parameters are not of the right form.

Hexadecimal constants must be 16 bits or less

INLINE can only generate 16-bit words. If you need a 32-bit constant,
break it into two 16-bit pieces.

I don't know what a <symbol> is

Compileltf knows how to ask HyperCard (through a callback) whether
your expression is a number, integer, point, rect, date, or logical. It looks
like you have a different question to ask. Try forming your own callback
with the value function.

Improper 'end if'

Compileltf found the keyword end at the end of an if-then-end-if or if
then-else-end-if construct, but it is missing the word if.

Improper comment after 'end if'

Compileltt allows only a comment or end of line after an end if.

Incompatible reference parameter

When a ROM routine requires a "VAR" parameter, it must be a particular
type. Either you are passing this ROM routine a Toolbox variable of a
different type, a shared variable that you declared to be some other type,
or else it is a local variable that you used in some incompatible way,
perhaps by passing it to another ROM routine that requires a different
VAR type.

Inconsistent or undefined value in 'it'

There is no value in it, or else it has been given different types in the two
legs of an if-then-else.

Inconsistent use of variable

Compileltf requires that the local variable used in a repeat with command
be used only in arithmetic (integer) expressions. If you need to do string

operations on its value, copy it to another (dummy) variable for the
purpose.

Inconsistent value in 'it' around repeat

The value in it is used at the beginning of the repeat, but it is not the
same type at the end.

Internal error FT
Internal error RO
Internal error R4
Internal error RS
Internal error R6
Internal error Rxx
Internal error VP

All internal errors signify a consistency check that failed, either &om a
corrupted copy of Compileltf, or &om an undetected bug. If you continue
to get this error after replacing Compileltf &om your backup, please
contact Heizer Software.

Invalid function parameter list
Invalid command parameter list

Unlike interpreted HyperCard, Compileltf requires that functions and
commands within the ROM and the compiled script be passed exactly as
many parameters as are defined for them. The ROM routines will bomb if
passed the wrong number of parameters; the requirement in the compiled
XCMD helps to make the machine code somewhat more efficient. This
error message reports that there are probably too many parameters for a
local command or function.

Invalid condition in if-then ('then' expected)

After the keyword if, Compileltf looks for a Boolean expression, fol
lowed by the keyword then. If there is something wrong with the expres
sion, Compileltl may never reach the end of the expression before it starts
looking for the then.

135

136

Invalid digit character

You will get this error if you try to do arithmetic on a tab or return or
other character constant that is not a digit.

Invalid 'end' line

There is something other than an end-of-line or comment following your
handler's name after the word end.

Invalid handler

Your handler does not begin with either on or function.

Invalid handler name

You have most likely used a reserved word as your handler name. Try
renaming your function or handler.

Invalid parameter list

This indicates the wrong number of parameters were passed to a library
routine. Maybe you've defined a custom symbol with the Custom Symbol
Edit card and passed it the wrong number of parameters.

Invalid pass command

HyperTalk only allows you to "pass" the name of the handler in which it
resides. This error occurs if Compileltl finds a different name on the pass

command.

Invalid repeat command

Compilelt! found something on the command line after it finished the
recognizable parameters to the repeat command.

Invalid script structure

After the final end line of a script there should be nothing other than
comments. There should also be nothing else between handlers when
there is more than one handler in a script (except shared variable declara
tions).

Invalid variable name

Compilelt! gets very confused when you use the same name for a variable
and the handler it is used in. It would help if you picked a different name
for one of these.

Keyword 'of' expected after property name

This property or function is expecting some phrase telling what it is the
property of, or what parameter to evaluate over. Maybe you meant
something different?

Missing 'else' or 'end' for if-then

When the keyword then is the last word on its line, the sequence of
commands that follow must be ended by either an else or an end if.
Compilelt! found neither. Most likely there is something wrong with one
of the commands.

Missing 'end' for if-then

When the keyword else is the last word on its line, the sequence of
commands that follow must be ended by an end if. Most likely there is
something wrong with one of the commands.

Missing end quote of string

A string constant must begin and end with a quote mark, must not contain
a return or end of line character, and (in Compilelt!) must not be longer
than 254 characters.

Missing Library routine <symbol>

Compilelt!'s internal library has become corrupted. Restore it from a
backup copy. You can also get this error if you are running Compilelt in
too little memory. Refer to the appendix about working in 1 megabyte for
some possible solutions.

Missing or incorrect name at end of handler

The end line of a handler should have the same name as the first line.

137

138

Nothing to compile

This error occurs if there are no handlers in the script.

'of' expected in chunk expression

Compile/ti is looking for the syntax, chunk of expression. If you get the
chunk part wrong, you could get this error.

One chunk at a time from handle or pointer

You cannot use a range of chunks (i to j) for Compile/ti's handle and
pointer chunk expressions, since one chunk is all you can get into a 68000
register.

Out of memory

Compile/ti has run out of memory. Refer to the appendix about working
in 1 megabyte for some possible solutions.

Record field name expected after dot

Pure HyperTalk does not use a dot for anything except a decimal point
Compile/ti uses it to designate the subfields in a record data structure as
defined in Inside Macintosh. But you must use the names listed in the
defined records for that to work. Refer to the Name List screen in
Compile/ti for the currently valid record subfield names (shown with an
"R").

Record field name inappropriate here

Since the only record-sized data structures you can have in an XCMD
created by Compile/ti will exist in the heap or shared variables, you will
get this error if you try to treat local (or global) variables as if they were
records.

Right parenthesis expected

It's possible that you have mismatched parentheses, but more likely that
the expression inside the parentheses has a syntax error that makes
Compile/ti assume it has reached the end prematurely.

Script is too big for one XCMD

The 68000 machine language has limitations that make it inconvenient to
address code resources that are larger than 32K. This error reports that
danger. If it happens, you should consider dividing your script into two or
more smaller pieces.

Shared variable type expected here

The form for a shared variable declaration is:
global varnarne

or
global varnarne:sornetype

It seems you put the colon in, but Compileltf does not recognize a type
word.

Simplify this expression

Compileltf ran out of floating-point temporary variables, probably
because integers or strings are being passed to local functions expecting
floating point parameters. Pre-converting the parameter values (using
"l) before passing or breaking up a complex expression with put com
mands would help

Subscripts don't work here

There are several kinds of objects that cannot be given array subscripts
(e.g., constants and local variables). You found one of these objects.

Subscript should end with ']'

Array subscripts are enclosed (on both sides) by square brackets. Perhaps
you made a mistake in your index expression, and Compileltf gave up too
soon.

There is no object associated with an XCMD

The container me is not meaningful in the context of an XCMD.

139

140

There is no repeat for this next

Compileltl found a next repeat command without an enclosing
repeat command.

There is no repeat to exit

Titls error reports that Compilelt/ found an exit repeat command
without an enclosing repeat command.

There is no result here

The result is only meaningful in compiled code after a message is sent
to another handler, or a function call, or after a div or mod. Some
Toolbox procedures also return a result, but most do not. You can compile
a small script with just the previous line (with whatever is required to
support it) and Debuglt checked on, then step over the line and look at
the result in the variable monitor to see if it has an indicated type. If
the type is shown as "?" then there is no result to test.

'to' expected in repeat with

The repeat with command must have both a starting and ending value
for the index variable. Compilelt/ is looking for the keyword to (or the
words down to) between these two values.

Too many parentheses

Compileltl's expression parser has a limit to how deeply you can nest
parentheses and function calls - about 20. You probably exceeded it. Try
breaking this line into separate lines with temporary variables.

Too many variables for one handler

Compilelt/ has a limit to how many different local variables you can
declare in one handler - about 200. It looks like you ran over. Try break
ing this handler into separate routines call~d from a smaller dispatch
handler.

Trap handler in ROM takes a different number of parameters

Compileltl no longer permits you to compile a handler with the same
name as a Toolbox routine, so you probably will not get this error mes
sage.

Use a number with handle or pointer chunk expression

Compileltl can take handle and pointer chunk expressions when you tell
it numerically which chunk you want, but it is not able just to take the
last or middle (or any) chunk in this format.

Using 'the' for that does not work

The keyword the may only prefix a built-in function or a property. This
error may turn up for legitimate functions or properties, too, if used
improperly.

You can't pass to a ROM routine with VAR parameters

You should not try to compile an XCMD with the same name as a ROM
routine, if that routine uses VAR Parameters. In general, you cannot
compile externals with the same name as installed Toolbox names. If you
absolutely need to have your external use the same name as a ROM
routine, first compile it using a different name, then use ResEdit or
Resource Mover to rename the external after compiling. But of course
pass won't work, so to get the same effect you must just call the Toolbox
routine directly, then exit (or return with the result).

141

142

APPENDIX E
COMPILEIT! VOCABULARY

This appendix documents Compilelt/'s vocabulary. The "Supported" words
are symbols that Compilelt/ understands when you first install it. Compileltl
can be "taught" about other symbols via the symbol table cards and the
Custom Edit card. Compileltl can also recognize commands and functions
(including calls to XCMDs and XFCNs) and properties that are not part of its
vocabulary even though it does not know what these symbols do - they will
be converted into text callbacks.

Compilelt/ is able to recognize when a name is a property based on how you
use it. For this reason, only those properties which conflict with names in the
ROM Toolbox are built into Compileltl This is so an alert message will gener
ally be displayed when a conflict occurs if you choose to install any of the
Toolbox names.

Supported HyperTalk Vocabulary

Known Commands

add drag lock select
answer edit mark send
ask else multiply set
beep enable next show
choose end open sort
click exit pass start
close export play stop
convert find pop subtract
create function print type
debug get push unlock
delete global put unmark
dial go putclickwait visual
disable hide read wait
divide if repeat write
do import request
domenu inline reset

143

Known Functions and Properties

abs itemDelim msg round
atan itemDelimiter number second
average left numtochar sin
bottom length offset sqrt
bottomright ln par am tan
chartonum lnl paramcount ticks
cos log2 par ams top
exp max random top left
expl menus result trunc
exp2 message right value
id min

Reserved Words

abbr button in short
abbrev card into stack
abbreviated cd is the
after contains long then
and div menu there
background field menuitem times
before fld mod to
bg for not until
bgnd forever of while
bkgnd handle on window
btn hypercard or with

within

Valid Constants

colon five pi tab
comma formfeed quote ten
down four return three
eight linefeed seven true
empty nine six two
false one space up

zero

144

Valid Chunks and Ordinals

all fifth line seventh
any first lines sixth
char fourth longint tenth
character integer mid third
characters item middle wd
chars items ninth word
eighth last pointer words

Compileltl also supports all of the standard operators(+,-,>,<, etc.). Un
known commands, functions, and properties that have normal syntax will be
converted into text callbacks.

Unsupported HyperTalk Vocabulary

The following vocabulary words are not supported.

exit to HyperCard

Supported only under HyperCard 2.0 and above and only if the Hyper
Card 2 option is turned on.

me

Me is not supported. (What would it refer to?) Use parameters to your
external instead.

145

146

APPENDIX F
SUGGESTED READING

Compilelt! requires that you know how to write scripts in the HyperTalk
language. If you're new to HyperTalk, reading one or more of the following
books is suggested.

The Complete HyperCard Handbook, Danny Goodman, Bantam Computer
Books, 1987

The Complete Book of HyperTalk 2, Dan Shafer, Addison-Wesley, 1990

HyperTalk 2.0: The Book, Dan Winkler and Scot Kamins, Bantam Computer
Books, 1990

Steve Michel's SuperCard Handbook, Steve Michel, Osborne/McGraw-Hill,
1989

If you're looking for more information on XCMDs, including sample C and
Pascal source code, you may want to read the following books.

XCMDs For HyperCard, Gary Bond, Management Information Source, Inc.,
1988

HyperTalk 2.0: The Book, Dan Winkler and Scot Kamins, Bantam Computer
Books, 1990

Compilelt! can be used to access the Macintosh ROM Toolbox. Using this
feature requires an understanding of the Toolbox. It is strongly recommended
that you have a working knowledge of Inside Macintosh I-II. Chemicoff's books
also serve as excellent reference sources.

Inside Macintosh Volume I-VI, Apple Computer, Inc., Addison-Wesley, 1985

Macintosh Revealed, Part 1: Unlocking the Toolbox, Steven Chemicoff,
Hayden/ Apple Press, 1985

Macintosh Revealed, Part 2: Programming the Toolbox, Steven Chemicoff,
Hayden/ Apple Press, 1985

Macintosh Revealed, Part 3: Mastering the Toolbox, Steven Chemicoff, Hayden/
Apple Press, 1989

How to Write Macintosh Software, Scott Knaster, Hayden/ Apple Press, 1989

The Programmer's Apple Mac SourceBook, Thorn Hogan, Microsoft Press,
1989

147

148

APPENDIX G
MEMORY REQUIREMENTS

The minimum memory required for Compilelt! 2.0 is 750K; ideally, you'll
want2000K.

Compilelt! has two modes of compiling - the Slow Mode and the Fast
Mode. The Slow Mode is a little slower than the Fast Mode (about 30% with a
good hard disk, much slower from other media) but can run very efficiently in
a minimal amount of memory. The Fast Mode is faster but requires more
memory. Each time you click the Compile it button on the Script Card,
Compilelt! automatically decides which mode to use based on how much
memory will be needed to compile the current script using the currently
installed symbols. The Compiler Phase Field will let you know which mode is
being used. You can also find out which mode will be used for the current
script by going to the Options Card. (The field at the top left of the card will
indicate whether the compiler will use the fast or slow mode of compiling.)

While all this is transparent, if you do not have lots of memory available, you
can sometimes get Compilelt! to use the Fast Mode by shortening your script
and/ or removing some unneeded symbols from the symbol table. Removing
unneeded symbols may also enable a script to compile if Compilelt! runs out
of memory even in the Slow mode, which could happen with longer scripts. It
may not be possible to compile moderately large scripts with Debuglt! turned
on, or very large scripts at all, in a minimum memory configuration.

If you successfully compile a script with Debuglt! turned on, it will probably
also run in the same memory space.

149

150

APPENDIX H
UPGRADING TO COMPILE/Tl 2.x

1his appendix is for Compileltl 2.x users whc· have upgraded from an earlier
1.x version. New users do not need to read this appendix.

Here are a few tips to help make your transition to Compileltl 2.x as painless
as possible:

Preserving Custom Symbols

If you made use of the Custom Symbol Edit card in Compileltl 1.5, then you
will want to preserve the custom symbols you created and move them into
Compileltl 2.x. 1his is done via the Save Names button on the Custom
Symbol Edit card. Just click on the Save Names button and an updater stack
will be created for you with all of your custom symbols in it. Titls updater
stack is compatible with Compileltl 2.x. A button in the updater stack will add
a new symbol card with all of your custom symbols on it into your copy of
Compileltl 2.x.

Batch Compiling

There are some subtle changes in the hooks for batch compiling; the former
Development Stack has therefore been updated and renamed Batch Compil
ing Stack. Do not use the old Development Stack with Compileltl 2.x.

New Syntax for Toolbox Access

Compileltl 2.x offers some new syntax intended to simplify accessing the
ROM Toolbox. Below is a script which takes advantage of the new syntax.
1his script is shown to illustrate how much simpler your code can be rather
than to document new features, which is done elsewhere in this manual. It is
recommended that you at least scan Chapter 5 Getting to Know the Toolbox to
learn more about these features.

151

'"

-- Display the color wheel
global RGBin:Record[6),RGBout:Record[6) -- shared variables

function SelectColor inRed,inGreen,inBlue

setPt myPoint,0,0
put inRed into RGBin.integertype[l) -- array notation

put inGreen into RGBin.integertype[2]
put inBlue into RGBin.integertype[3]
if not GetColor(myPoint, "Please choose a color:",RGBin,RGBout)

then return empty
-- non-existent chunks are supported

put BitAnd(RGBout.integerType[l],$FFFF) into item 1 of val

put BitAnd(RGBout.integerType[2) ,$FFFF) into item 2 of val
put BitAnd(RGBout.integerType[3) ,$FFFF) into item 3 of val

return val
end SelectColor

APPENDIX I
WHERE TO FIND MORE

INFORMATION ON COMPILE/Tl

If you are like most Compileltl users, you'll want to share tips and techniques,
acquire more sample code, customize Compilelt/ to suit your special needs,
etc. This appendix will tell you where to find other users and how to get
additional technical information on Compileltf

Online Services

Compileltl users can be found on Compuserve in the MacHyper forum ("Go
MacHyper") and on America Online in the HyperCard section. Heizer Soft
ware will upload updater stacks, bug fixes, sample code, and technical notes
to the software libraries at both of these online locations from time to time.

America Online has created a Compilelt/ Special Interest Group where
Compilelt/ users can share tips and tricks, sample code, etc. Use Keyword
"MHC" and then open the "Special Interest Groups" folder to find the SIG.

You can reach Heizer Software through several online services including
America Online, Compuserve, and AppleLink. Check the membership direc
tory of these services for Heizer Software's address.

User Groups

Heizer Software will be happy to provide Compilelt! technical notes and a
Working Model edition of Compilelt! to your user group's library. The
Working Model compiles only 10 lines or less, it does not include Debuglt!,
and its symbol table cannot be modified. Call Heizer Software at 510-943-7667
for more information.

Compilelt! Linker - This utility creates "Code Libraries" which any
Compileltf user can use. Code Libraries are object code libraries similar in
concept to MPW ".o" files. The Linker is required to create the Code Libraries,
but once created, any user can install and use them. Simply refer to specific
routines in a library and Compilelt! retrieves the object code for the named
routine and incorporates it into your external. You can use many development
systems besides Compileltf to create your Code Libraries.

153

154

Use the Linker to distribute useful routines to other Compileltl users while
protecting your source code inveshnent. Use with Compileltf existing code
you have written in other languages without translating your code into
HyperTalk first. #30-0427, $49.00.

About Updates

From time to time, Heizer Software may create updater stacks that fix minor
bugs, add or update symbols (as new machines are introduced, additional
ROM calls may be introduced as well), or add minor new features. You'll be
able to find these updates in the MacHyper forum on Compuserve and in the
HyperCard section on America Online.

Users who make use of the Custom Symbol Edit card in Compileltf are
encouraged to use the Save Names button on that card to create updater
stacks that will be of use to other users. Hopefully, many users will create
updater stacks and make them available through the major online services so
that all users can benefit.

APPENDIX J
TIPS FOR CREATING
USEFUL EXTERNALS

There are a number of things you can do to make your externals more useful
to yourself and to others. Some of these tips are adapted from a document
called "HyperCard's EDGE" available in the MacHyper forum on
CompuServe.

Provide Help

It's not too hard to provide help to assist others in using your external. A
common convention is to return help when the question mark ("?") is passed
to your external. It's also easy, as we shall see, to include such help in your
Compileltf externals.

Help is useful not only to others who might be using your external, but to you
as well. It's easy, when you write your external, to know what parameters it
takes, but it might not be so easy to remember them next month or next year.
Since HyperTalk is always interpreted, it's easy to peek at the code to refresh
your memory. You can't do that with compiled externals.

Suppose you've written an XFCN to sort lines in a container. You might
include several optional parameters, so there's something for you to remem
ber when you use the XFCN. Say your XFCN takes three arguments: the
container to sort, the direction to sort it (i.e., ascending or descending), and the
type of sort to make (i.e., an ASCII, International, Numeric, or Date sort).
Here's how a syntax statement for this XFCN might read:

SortContainer (container, [direction], [type])

Here's how you would implement Help in this XFCN:

on Sort container,direction,type

if container = "?" then return Help()

--rest of code
end sort

function Help

return "SortContainer(container, [direction], [type])"

end Help

155

156

Make sure your Help statement is concise and fits the standard of Apple's
Script Language Guide. Also make sure it fits in one short line, so it can be read
in the message box.

You can also include a second handler, to allow you to embed and return
copyright information, when the exclamation point("!") is passed to your
external. This has the benefit of compiling, right into your external, the ASCII
text of your copyright notices. This allows you at least to monitor use of your
external in other stacks. Here's the function:

function copyright
return "©1990 John Doakes. All Rights Reserved"

end copyRight

You can insert this line into your main handler, as was the Help test:

if container= "!" then return copyright()

Before using such a line, though, make sure you are providing the correct
copyright information you want. "All Rights Reserved" has specific legal
meanings.

Here are some other guidelines that should help make your externals easier to
use:

Follow HyperTalk Syntax

Whenever possible, base the syntax of your external on the syntax of a related
or similar HyperCard command or function. For example, HyperCard's
Offset function takes two arguments, which are text strings, and returns the
number of characters from the beginning of string2 at which stringl
begins. If you are creating an XFCN that returns, say, the line number contain
ing stringl, you should make sure that the order of parameters passed
works in the same way; don't reverse them.

Keep Input Short and Allow for Abbreviations

If your external wants some specific text, allow for abbreviations of that text.
For example, don't require that the word "Help" be passed to your external.
Allow instead for the question mark. In the earlier example about the sorting
XFCN, don't require the word "Ascending", allow for an" A."

Allow Halting with Command-Period

HyperCard, of course, allows users to stop unconditionally any script with the
Command-Period key combination, and your externals can do this too. This is
especially true of externals that may take some time to run, but can come in
handy at any time, such as during development. There is a function that tests
to see if the Command-Period key combination is being pressed in the
"Names for Toolbox Access" symbol card. You can call this function at any
time in your external - preferably within a loop that might take some time to
execute, and take appropriate action.

Avoid Object Dependency

Object dependency is referring to specific fields, buttons, cards, stacks, or
other resources in your scripts. Instead of using lines such as get the rect

of card button 7 (which, as discussed in Chapter 3 of this manual, is a slow
text callback), you can instead make that rectangle a parameter that is passed
to your external. This mcikes for more general externals - that is, externals
that can be used in many different situations - and makes for easier debug
ging and modification.

Don't Interact with the User

Generally speaking, your externals should not interact directly with the user,
for instance by using the Ask and Answer commands to create a dialog. If
your external needs information, make that information a parameter to the
external; if your external is generating an error message, return that error
message to the script.

157

158

APPENDIX K
INLINE MACHINE-LANGUAGE CODE

Compileltl is intended to serve two kinds of users. Most users will not be
expert programmers - in fact, we expect that with not much more sophistica
tion than it takes to write good scripts in ordinary HyperTalk, you can use
Compileltl to write useful XCMDs. Most people using it at this level need
never use the Toolbox ROM facility, and will still benefit from many of the
advantages of compiled code.

A different group of users will know the ins and outs of the Macintosh, yet
will find it simpler to use HyperTalk and Compileltl than the conventional
programming languages and their compilers. Part of the reason Compilelt/
was written in HyperTalk was to ensure its ease of use.

With increasing sophistication also comes the occasional need to do something
the compiler's author did not offer - perhaps to access some special resource
in an unforeseen way. The best Macintosh compilers offer their users a facility
called "inline code," which lets the knowledgeable programmer specify actual
machine language instructions in assembly language or hexadecimal con
stants. Suppose you want to call an FKEY from within your XCMD.
Compilelt/ does not know about FKEYs nor how to jump to them, and there
are no Toolbox routines that do it. You need to use INLINE.

Apple's Pascal offers only hexadecimal constants for INLINE code. This is
normally adequate, but you have to know a lot about what code the compiler
is giving you and where the variables are to make it work. Because Compileltf
stores local variables offset from register A7 instead of A6 like most other
compilers, variable access can be very tricky. The INLINE facility in
Compileltl lets you get the address of a variable or subroutine (handler or
function) in a high-level notation that is less error-prone than straight hexa
decimal. There is also notation for preserving the runtime stack integrity. This
is important, since if you modify the stack pointer A7 without telling
Compileltf your XCMD will get wrong results or even bomb.

The form of the Compileltf INLINE command is:

INLINE item, item, item, ...

159

160

where each item is either a hexadecimal constant, a name reference, or a stack
adjustment. Hex constants use the familiar "$" notation, and should have no
more than 4 digits (fewer is OK, they are filled out with zeros on the left). A
name reference is the name of a local variable or handler compiled together in
your script, preceded by a star"*"; the address of the variable or subroutine is
loaded into register AO. The name must be already visible when you use it,
that is, you have to already have put something into the variable, or the
handler must precede the handler with the INLINE. A stack adjustment is a
decimal number preceded by a"+" or"-", and should mirror your use of
instructions that alter the value of A7. Thus if you code an instruction like
$59BF that decrements the stack pointer by 4 (effectively increasing the stack
size by 4 bytes), you should follow it immediately by the adjustment +4.

For example, many people use the FKEY "Switch-A-Roo" on their Mac II to
switch to 2-color mode so that the visual effects will work. To call up this
FKEY, it is necessary to load it into memory with a GetResource ROM call,
lock it down with HLock, and jump to it with a JSR. The JSR part requires
INLINE. The script will look something like this:

on FKEY nurn

put GetResource("FKEY",nurn) into rnyHandle

HLock rnyHandle

INLINE @rnyHandle -- handle to AO;

INLINE $2050 MOV @AO,AO

INLINE $2050

INLINE $4E90 JSR @AO

HUnlock rnyHandle

ReleaseResource rnyHandle

end FKEY

APPENDIX L
INSIDE COMPILE/Tl

This appendix peeks under the covers of Compilelt! for people who need the
extra technical information or are just plain curious. There are two kinds of
"inside information" of interest, which we address in two sections. The first is
concerned with what kind of code Compilelt! generates for your external. This
is of interest to machine language techies trying to interface their XCMDs to
other languages, or those wanting to use Compilelt! to compile code resources
other than HyperCard externals. Heizer Software does not support these
unconventional uses of Compilelt!, but they are possible if you know what
you are doing. This appendix tries to help. The second section gives some
information about how Compilelt! itself works - mostly to satisfy curiosity,
since there are no user-serviceable parts inside.

Inside the Compile/ti-Compiled External

The compiled external consists of four sections: (1) the startup prolog, (2) the
string constants, (3) the compiled handlers and functions, and (4) the included
library. All versions of Compilelt! generate code resources in the same form.

The startup prolog is mostly canned machine code with a JSR instruction to
the main function or handler inserted at compile time. The startup code saves
all the conventionally non-volatile CPU registers (HyperCard saves them also
before jumping to the external, but other hosts may not), and initializes its
own register defaults. The string reference count handle is allocated and
initialized, and if shared variables are used, they are cleared to zeros (by a
library call). The call to the main handler is carefully placed so that it can be
recognized by the inline XCMD linker at runtime, if you use the direct XCMD
call feature of the Custom Symbol Edit Card. The linker code depends on the
fact that the prolog has a special form, and we have carefully preserved that
form in Compilelt! 2.0. When the main handler exits, it returns to the prolog,
which then disposes the string handles no longer in use, restores the saved
registers, and returns to HyperCard (or other host).

The prolog code is constructed from two templates in the first four lines of the
LIBR #16383 resource. One template is for the pure HyperTalk external, and
allocates less space on the CPU stack. The other is used when the script has
Toolbox calls or shared variables, and accomodates the increased memory

161

162

requirements of these features. If you use MacsBug or another debugger that
knows about MacsBug names, the prolog (except for the first three instruc
tions) will be identified as "XCMDglue."

The string constant section needs little explanation: it consists primarily of P
strings, with occasional SANE constants. If Compileltf discovers a constant
during Pass 2 that was not known in Pass 1, the constant is simply coded
inline, with a branch over it.

The compiled code section consists of one or more closed subroutines. Each
routine begins with a LINK instruction whose sole purpose is to aid MacsBug
to find its name; it is not executed. Following the LINK is a sequence of CLR
instructions that allocates local variable space on the stack and simultaneously
clears it to zeros. If the routine uses any SANE operations, some additional
(uninitialized) space is allocated for expression temporaries. After that comes
the compiled code itself. Each subroutine ends by popping off the stack any
temporary variable space, then loading into DO-D2 any result before exiting
with an RTS. When MacsBug names are enabled, the RTS is followed by an
otherwise unused UNLINK and another RTS to flag the handler name.

The library code similarly consists of a sequence of closed subroutines, all
selected from a canned set of code fragments in the LIBR #16383 resource. At
the beginning and end is the requisite (but otherwise unused) LINK and
UNLINK instructions to give the entire sequence the name "Library.", though
the late addition of the itemDelim property in this space Gust before the "L")
tends to foil MacsBug. The order of the library routines is determined by their
references in the library section of the current symbol table (LIBR resource
#16384), but the selection is dynamic - only library routines that are actually
used are included. The current item delimiter, as set by the ItemDelim prop
erty, is stored in the first character of the library name, just before the "L." The
library is all hand-coded machine code. We expect future versions of
Compileltt to be good enough to permit the library routines to be written in
HyperTalk also, eliminating this one tiny fib in the source code.

Compiled HyperTalk Code

The best insight into the kinds of code generated for a particular HyperTalk
command or operator is to examine the code information line in the Debuglt!
window.

Calls to local handlers and functions are the simplest code. The parameters are

pushed onto the stack as 4-byte values or handles, and the function or handler
result is returned in the DO register. The caller is responsible for removing the
pushed parameters. String handles passed as parameters are reference
counted before the procedure is called, and counted back down by the called
procedure before it returns. Toolbox calls are generally very similar, but the
size of the parameters depends on the data types, and the called toolbox
routine is responsible for removing the stacked parameters. The symbol table
entry defines how many bytes are required for the result and designates the
stack as where the result is when it comes back.

OS Toolbox calls are register-based. In the general case, the parameters are
pushed onto the stack as before, then popped into the requisite registers as
specified in the symbol table glue code. When an OS routine takes only one
parameter in a register, the symbol table has a way to designate that register
as the destination register directly, eliminating the extra stack push and pop.
The specific symbol table notation for this is discussed in technical notes
elsewhere.

The interface to callbacks is also fairly simple. The parameters to callbacks are
stored directly into the XcmdBlock, and return value is extracted from the
OutArgs. Because the parameters are not pushed on the stack, nobody is
responsible for removing them.

In some cases additional glue is required to convert between the public and
private interface to a Toolbox routine or callback. For example, each of the
packages and many of the newer managers have a single Toolbox trap, and
the many routines are selected by a 2-byte selector pushed on the stack or
loaded into DO. Since a different selector is used for each entry name in the
group or package, it is encoded as part of the glue in the symbol table. An
other complication arises from certain kinds of VAR parameters, and this is
also solved in the glue code. These are not really compiler code generator
problems in the sense that the compiler is not concerned with them, and they
are solved elsewhere.

The rest of the code generation is strictly the compiler's domain. In the case of
data type conversions, the compiler has a roadmap that connects every data
type it knows about to every other data type. Some times the road from type A
to type B goes through type C, and sometimes there is a direct route. Most
data type conversions involve extensive code, so a toolbox, callback, or library
routine is used; again, the Debuglt! code information line is probably the best
way to discover what is happening, or for a more detailed analysis you can
disassemble sample code lines after they are compiled.

163

164

When you test a comparison in an IF command, Compileltl generates the
correct conditional branch for the condition being tested. If the condition is
used in a logical operator such as AND, OR, or NOT, or if its result is put into
a variable (including passing it as a parameter to a function or handler), the
condition is converted first to a single bit in a 32-bit word using the SETcc
opcode and a couple of additional instructions to extend the byte to a full
word. Almost all forward branches generated by Compileltf are the longer
form.

Repeat loops use the same condition testing mechanism as the IF command,
when that is appropriate (repeat while or repeat until). If the repeat is
given a fixed number of repeats, by either the WI1H or TIMES form, the
number of repeats is pushed onto the stack, and counted by a SUBQ instruc
tion. In repeat with, the control variable is independently incremented or
decremented, so that if the compiled script should modify the control variable
within the loop, this does not affect the actual number of repeats -just like
HyperCard. Debuglt! displays the contents of the stacked repeat counters for
active repeats in the current handler script at the top of its variable window.

Integer arithmetic is one of the few places where Compileltf can generate
efficient native code. Multiplying or dividing by a constant power of 2 is
recognized by Compileltt, which generates arithmetic shift instructions.
Dividing a negative number in HyperCard gives a slightly different result
than a simple shift, so additional glue is required to correct the result in those
cases. If you understand what you are doing, or all your divides by a constant
power of 2 involve positive dividends, then you can set a special flag that
eliminates the extra glue. This flag also predisposes the result of a local "on"
handler to be integer (not string), so be careful if you are using the result of
calling such handlers. The flag may be turned on by replacing the "Pre
lude(B)" in the LoadnGo call in the first handler of the stack script with
"Prelude(24)." The meaning of these flags is defined fully elsewhere.

Division by a variable or expression other than a constant power of 2 is
performed by a library routine. Division by zero will typically give some
wrong answer (any answer is of course wrong), but the result will contain
the string "DIV O" instead of the normal empty string. Note: do not attempt to
modify the result from a divide in Debuglt!, or you will trash library code.

The 68000 CPU has only a 16x16-bit multiply operator, so Compileltf gener
ates 3 multiplications and adds the results to get a correct 32x32-bit multiply
with a 32-bit result. A fourth ~ultiplication would have been required to

obtain the complete 64-bit result, but since Compileltt discards the high 32
bits, this is not necessary. The multiplication code is compiled in-line.

If you use the Add or Subtract command with a local integer variable and a
small integer constant (as in "add 3 to x"), Compileltl will generate optimal
68000 code, a single ADDQ instruction. Otherwise all integer arithmetic is
performed in the data registers of the CPU. Better code is sometimes possible,
but the cost in compile time is not deemed worth it at this time.

Local variables are accessed in the compiled code by an offset from A7. Since
temporary values may be pushed onto the stack (which also uses A7) from
time to time, Compileltl maintains a current stack depth that is used to
determine the correct offset to local variables, and also to determine how
much to discard when the handler or function exits. This is why it is impor
tant, when you use INLINE commands, to accurately report to Compileltl the
migration of A7 caused by your code. Shared variables are pushed onto the
stack in the XCMD prolog, and are accessed by offsets from A6, which is not
altered by the individual handlers.

Compileltt's Toolbox extensions to HyperTalk gain the advantage that these
constructs bring to C and Pascal: very efficient code. Access to shared vari
ables and Toolbox globals is as fast and efficient as local variables. When you
use"@",".", or the array notation"[...]", the code generated is nearly as good
as your favorite MPW compiler ... and getting better as we work on it.

Using MacsBug, you can disassemble by doing the following: Compile the
script with Debuglt! enabled, and insert a Debugger or DebugStr command
just before the line of interest. Run the XCMD, and when you stop in
MacsBug, you can disassemble from the current PC to see the next line of
object code. By doing this with Debuglt! turned on, it is easy to see where each
line starts and ends. Between the lines Compileltl inserts Debuglt! calls, each
consisting of a MOVQ line#,DO, followed by a library call. You can count the
number of lines from the start of the script to the line of interest to identify
which MOVQ is the line number for the line of interest.

Inside the Compiler

Compileltl uses a textbook recursive descent (top-down) parser to analyse the
commands and expressions of the HyperTalk being compiled. Because the
first implementation had to run in Apple's HyperCard environment with its
"Too much recursion" limitation, the recursion stack of the parser was trans-

165

166

lated into a data structure, originally a card field, then a faster string variable,
but now a simple handle on the heap. Other heap-based structures track
nested loop structure, and in the case that Debuglt! is enabled, the line statis
tics for incorporating into the listing part of the Debuglt! window. Handles
also accumulate constant strings during Pass 1 so that they can be inserted
into the output binary resource in a single location, the locations of the EXIT
and RETURN commands, a separate expression stack for SANE expressions, a
compiler stack used to remember where temporary expression values exist,
and the like. Handles are also used for local copies of the current script,
symbol table, and output code structures.

For each function or handler being compiled, Compileltf builds a symbol table
line (in memory only, not added to the resource) in the same format as the
symbol table Toolbox functions and procedures. A HyperCard string handle is
constructed with the names of all the parameters and local variables. Thus the
compiler limit of these variables is quite generous. Another handle is con
structed to record the places where this procedure is called; a similar list is
constructed for each library routine.

The symbol table is searched in two steps for any symbol encountered in the
script. The first phase searches through the symbols defined in the current
script in a linear order, generally last symbol first. If not there, the main
symbol table is scanned by a fast binary search, and if the symbol is found, its
location is added to a hash table for even faster recovery next time. This limits
the effect of the number of installed symbols on compile speed from search
ing, though local names added to the front still require shifting the whole table
as the symbols are added.

Compileltf allocates another 2K of fixed-size P-string and other temporary
variables, including the current token (word, constant, or punctuation), the
current symbol table line, the name of the external and of the current handler,
and an expression type stack. These are allocated on the CPU stack in the
place of shared variables, as are also most of the compiler's internal globals.

When Compileltf starts up, a small XCMD (LoadnGo) does much of the
initialization. If the available memory is sufficient (as determined by bit 1 in
the option parameter being 0), LoadnGo builds an integrated code block from
KODE resources. Otherwise it loads the kernel for the paged version. In the
integrated version all calls are resolved within the same KODE resource, while
in the paged version the most common routines are in the kernel and the
others cause the currently active overlay to be swapped out and replaced by
the KODE resource containing the called routine.

Compileltf does not support swapping in your externals, but the paged mode
of compiling used for tight memory situations actually swaps segments of
code in and out as Compileltf works. It may be of interest that the segment
manager within Compileltf converts the return addresses on the stack into
relative addresses for inter-segment calls, then restores the absolute addresses
for the reloaded segment in a possibly different location on return, perhaps a
unique implementation in Macintosh software. The result is that Compilelt/
can operate (in the paged mode) with less than 50% of the memory required
for the resident (integrated mode) compiler. Careful selection of the routines
for each segment enables paged execution to run a mere 30% to 50% slower
than the integrated mode. The extra processing time is mostly due to disk
access, and a faster hard drive will suffer less degradation than (for example) a
floppy disk.

167

168

APPENDIX M
THE HYPERCARD 2.X

XCMD INTERFACE

The definitive source for information on HyperCard external commands and
functions is the Claris Script Language Guide (SLG). This appendix, however,
summarizes the most important and useful facts. XCMDs and XFCNs are code
resources that Compilelt! installs in the resource fork of the target stack. They
lie in the standard HyperCard message hierarchy between the stack script and
the first of any "StacksinUse" (or the Home stack, if none). Thus a handler in a
card, background, or stack script will have the first chance at a command or
function message, then the installed XCMDs and XFCNs, then the uncaught
message continues up the hierarchy to the stacks in use, home, and finally to
HyperCard itself. The external can also "pass" a message it caught on up the
hierarchy, just as any other script can.

When HyperCard finds an XCMD or XFCN with a resource name that
matches a message not caught by the stack script or earlier, it loads the
resource into memory, constructs a data structure called the XcmdBlock, and
sends that to the code in the resource. All this is transparent to both the
scriptor and the writer of the external using Compilelt!, since the form of
message handlers and functions in the external is so similar to HyperTalk in
the stack scripts. If you need to use the fields of the XcmdBlock, they are
defined in the HyperCard 2 Names card of the symbol table options, and
listed at the end of this appendix.

HyperCard provides the external with a collection of useful functions and
procedures that the external can invoke, called callbacks. Some callbacks
represent operations that only HyperCard can do, because they access private
data structures. Others are simply utilities that HyperCard must support for
its own use, and are made available to the rest of us as a convenience.
Compilelt! automatically calls some of the callbacks as a part of the generated
code for your compiled scripts; these are noted in the symbol card. Other
callbacks are duplications of code that we think Compilelt! can do better in its
own library. Still others are necessary to support external windows in Hyper
Card 2.0 and later.

All the callbacks we know about are listed in the next section, with a brief
explanation of how to use each one. The Claris documentation shows the

169

170

callbacks as Pascal functions and procedures, but we have listed them using
HyperTalk syntax, since that is how you would use them in Compileltl There
may be additional callbacks included in the HyperCard 2 Names card but not
listed here. Two undocumented (and probably unsupported) callbacks are
described in Winkler and Kam.ins, HyperTalk 2.0: The Book.

The current edition of the SLG no longer publishes the request numbers for
the callbacks, but they are easy enough to extract from Apple's 11

.0
11 file or the

Compileltl symbol table. Users of Compileltl probably don't need these
numbers anyway, except possibly to decode the cryptic numbers in Debuglt!'s
"Review Binary Callbacks" dialog. The callbacks Compileltl puts in the
external are decoded in the dialog for you, and the others can usually be
inferred from the name of the callback in the currently executing line of your
source code.

HyperCard 2.0 introduced a new interface for externals that allows them to
receive messages designated for a particular window that the external might
own. These messages give the external a flexibility not unlike the objects on a
card, which the scriptor can program to respond to mouse clicks and other
events. There is a defined set of messages that HyperCard can send to an
external which is controlling a window. These are listed, with a brief explana
tion of their significance, in the section following the callbacks. Again, we
have shown the HyperTalk syntax Compilelt! uses to support these events,
rather than the Pascal code suggested by the HyperCard documents.

Events sent to external windows come with parameters, somewhat like the
message that any XCMD or XFCN would receive, and we have tried to make
the interface as much like HyperTalk as possible. In some cases, however, the
data structure does not lend itself to a simple representation as a parameter
list. The final section of this appendix, therefore, gives the component fields of
each interface structure, including the XWEventinfoPtr block, with a brief
explanation of its fields. The fields are shown using type indications as if they
were shared variables; they are only fields in a record structure, but the
notation may help us understand their types and sizes.

All of the callbacks, constants, and data structures listed in the SLG for the use
of externals are included in the HyperCard 2 Names card of the symbol table
options. The names that you are unlikely to need are marked (•) so that you
can install the entire list, then Remove Marked to eliminate the useless ones.

The SLG includes the source code for the XCMD "Flash" in Pascal, C, and

Assembly. The Examples card of Compilelt/ gives the source code for an
equivalent XCMD, but in HyperTalk for comparison purposes.

HyperCard Callbacks

on AbortScript

This callback works something like executing the command exit to

Hypercard in a script, except that it only takes effect when your external
returns to HyperCard. HyperCard assumes it is not safe to abort your
machine code, and besides, if you asked for this, then presumably you can
figure out how to get back to HyperCard safely. This callback is intended
for use in a debugger xWindoid, but Compileltl also uses it for the exit

to Hypercard command.

on BeginXSound windowPtr

Use this callback before making any direct sound manager calls. If calling
from an external window, pass your windowPtr parameter so that
HyperCard can send you a Gi veUpSoundEvent if necessary. If you pass
nil (perhaps because your external has no window), then HyperCard
will not be able to recover the sound channel if it needs it.

on BeginXWEdit windowPtr

This callback lets HyperCard know that your window will be the active
editing environment, so you will thereafter get all edit and keystroke
events (except for commandKey menu equivalents).

on BoolToStr bool,str

Convert the Boolean value bool to a P-string in the variable str.

on CloseXWindow windowPtr

This callback lets HyperCard know that you wish to close your window.
You should not actually close anything yourself until your external
receives a CloseEvent, and then you should only dispose your own
structures, but let HyperCard close and dispose of the window itself.
HyperCard owns the windowPtr, it's only on loan to you. You could also
call CloseXWindow for some other XCMD's window if you have the
chutzpah; it's the same as typing close window whatever in the
message box or a script.

171

172

on CountHandlers handlerCount

1his callback returns in the integer variable handlerCount the number of
active handlers. Zero means that no script is currently running.

on EndXSound

Use this callback after completing all direct sound manager calls, includ
ing deallocating the sound channel.

on EndXWEdit windowPtr

1his callback lets HyperCard know that you are ready to give up editing.
It will respond by sending your window a Gi veUpEdi t event, which can
also happen if another window requests BeginXWEdi t.

on ExtToStr nurn,str

Convert the Extended (SANE) value nurn to a P-string in the variable
str.

function EvalExpr(expr) -- HyperCard string result

Evaluate the str255 (P-string) expression expr, and return a zero-termi
nated HyperCard string handle result, which Compileltl recognizes as an
ordinary string.

on ForrnatScript scriptHndl,insertionPt,quickForrnat

1his uses HyperCard's script formatting routine to reformat the script in
the zero-terminated handle scriptHndl. If quickForrnat is true then
only the handler containing the insertion point is formatted. You should
pass the byte offset to the insertion point in the variable insert ion Pt,

which HyperCard will adjust to a new value reflecting the same relative
position in the text. If you are using TextEdit, you can pass it
TEhandle@@. selStart, then call TESetSelection after Format Script

returns. If you have the script as a HyperCard string, you can get its
handle by using CharsHandle.

function FrontDocWindow -- windowPtr result

1his returns the windowPtr of the front window in the document (not
floating) layer.

function GetCheckPoints -- handle result

This function returns a handle with a copy of the checkpoints for the
window's script, or nil if there are none. The handle is an array of 16
integerTypes. You must dispose the handle yourself when you are fin
ished with it.

function GetFieldByID(cardFld,fldID) -- HyperCard string result

If cardFld is true, then return the contents of the card field whose ID is
fldID as a HyperCard zero-terminated string; if false, then return the
contents of the background field instead.

function GetFieldByName(cardFld,fldNarne) -- HyperCard string

If cardFld is true, then return the contents of the card field whose name
is fldNarne as a HyperCard zero-terminated string; if false, then return
the contents of the background field instead.

function GetFieldByNwn(cardFld,fldNurn) -- HyperCard string

result

If cardFld is true, then return the contents of the card field number
fldNum as a HyperCard zero-terminated string; if false, then return the
contents of the background field instead.

function GetFieldTE (cardFld, fldID, fldNwn, fldName) -- TEhandle result

If cardFld is true, then return a copy of the styled TEhandle for the card
field whose ID is fldID, or if fldID is zero, then return the TEhandle for
card field number fldNwn, or if that is zero also, then return it for the
card field whose name is fldNarne. If cardFld is false, then return the
styled TEhandle for the corresponding background field instead. If the
field does not exist, or there is insufficient memory to allocate a new
TEhandle, nil will be returned. Note that this is a copy of the master
TEhandle, so you must call TEDispose when you are done with it. Note
also that its grafPort (theHandle@@. inPort) is left pointing to the current
card, so if you do any drawing with this handle (including sending it to
TEUpdate or TESetSelect), you may want to change that field to
prevent drawing on the card window.

function GetFilePath(fileNarne,nurnTypes,typeList,askUser,•

fileType,fullName) -- Boolean result

This uses the HyperCard search paths as specified in the Home stack to

173

174

locate the full path name for the file fileName. The numTypes and
typeList parameters are as in the SFGetFile. If askUser is true, then if
HyperCard cannot find the file on its own, it will put up a dialog to ask
the user. The full path name of the found file is returned in the string
variable fullName, and its type is returned in the variable fileType. If
the file is not found, then GetFilePath returns false.

function GetGlobal(globName) -- HyperCard string result

Returns the value of the HyperCard global variable globName.

on GetHandlerinfo handlerNum,handlerName,objectName,varCount

This callback returns information about one of the currently active han
dlers. If handlerNum is 1 then the information is the last one called that
has not yet returned; 2 is the script that called it, and so on back to the
script that received the original mouseUp or other system message. The
name of the designated handler is returned in the variable handlerName,

and the variable obj ectName gets the name of the object it belongs to.
The integer variable varCount gives the number of variables that han
dler knows about. If there are no active scripts, then calling
GetHandlerinfo with 0 in handlerNum returns the number of defined
global variables in varcount.

function
GetNewXWindow(templateType,templateID,colorWind,floating)

This opens an external window ("xWindoid") from the resource number
template ID of type templateType (which must be either WIND or
DLOG), and returns the windowPtr as the function result. If colorWind

is true and Color QuickDraw is not present, then no window is opened
and GetNewXWindow returns nil. The window is opened in HyperCard's
floating or document layer, depending on whether floating is true or false.
The window pointer is used to identify which window a subsequent
window event belongs to.

on GetObjectName XTAlkObjectPtr,objName

This command returns in the string variable obj Name the name of the
object that has its data defined by XTAlkObj ectPtr.

on GetObjectScript XTAlkObjectPtr,scriptHndl

This command returns in the handle variable scriptHndl the script of
the object that has its data defined by XTAlkObj ectPtr.

function GetStackCrawl -- HyperCard string result

Ibis returns a string containing the list of open handlers, indented as in
the message watcher.

on GetVarinfo handlerNum,varNum,varName,isGlobal,varValue

1bis callback returns information about one of the variables known by the
specified handler. The parameter varNum should be a number between 1
and the varCount returned by GetHandlerinfo for the same
handlerNum. The name of the designated variable is returned in the
variable varName, and the Boolean variable isGlobal is set to true if the
variable is global. The HyperCard string variable varValue gets the
value of the variable.

on GetXResinfo resFile,resID,rType,name

HyperCard returns in variable res File the file reference number of the
resource fork that the external was read from, and the resource ID, type
(XCMD or XFCN), and name in the other three variables.

on GoScript

1bis callback is intended to enable a debugger to tell HyperCard to
resume normal execution.

function HCWordBreakProc() -- procPtr result

Ibis function returns the pointer to HyperCard's internal word-break
procedure, which it uses for editing fields, scripts, etc. You can use this in
the wordBreak field of a TextEdit record if you wish.

on HideHCPalettes

Ibis callback tells HyperCard to hide all its built-in palettes.

on LongToStr posnum,str

Convert the unsigned Longlnt value posnum to a P-string in the variable
str. Ordinarily Compileltl considers all integers to be 32-bit signed
numbers, but dates after 1971 (calculated in seconds) come out negative.
You can use this callback to return positive strings for dates more recent
than that.

175

176

function NewXWindow(boundsRect,title,visible,procID,•

colorWind,floating) -- windowPtr result

on

This opens an external window ("xWindoid") using the specified param
eters, and returns its windowPtr as the function result. The parameters
boundsRect, ·title, visible, and procID areasintheToolboxcall,
NewWindow. For example, if visible is false, then the window is created
but not shown. If colorWind is true and Color QuickDraw is not present,
then no window is opened and GetNewXWindow returns nil. The window
is opened in HyperCard's floating or document layer, depending on
whether floating is true or false. The window pointer is used to identify
which window a subsequent window event belongs to. To create palettes
like HyperCard's, you can use the following constants for procID:

2048

2052

2056

2060

8

2

1

Notify

paletteProc -- window with grow box

palNoGrowProc -- standard window

palZoomProc - window with zoom and grow boxes

palZoomNoGrow -- window with zoom but no grow box

hasZoom

hasTallTBar

toggleHilite

This callback causes HyperCard to blink a small stack icon over the Apple
menu if it is running in the background. It does not return until the user
switches HyperCard to the front.

on NwnT9Hex nurn,nDigits,str

Convert the integer value nwn to a hexadecimal P-string of length
nDigits in the variable str.

on NwnToStr nurn,str

Convert the integer value nurn to a P-string in the variable str.

function PasToZero(str) -- HyperCard string result

Convert the P-string parameter str to a native HyperCard null-termi
nated string.

on PointToStr pt,str

Convert the Toolbox point in pt to a P-string in the variable str.

on PrintTEHandle TEhandle,headerStr

1his displays a print job dialog, then prints the TE record with the font,
size, and style information in it, with headers tr as a header string.

on RectToStr rct,str

Convert the Toolbox rectangle in rct to a P-string in the variable str.

on RegisterXWMenu windowPtr,menuHandle,registering

Use this callback to associate a menu with a particular window. After you
create a menu with a unique menu ID, call RegisterXWMenu with your
windowPtr and the menuHandle, and registering set to true. Then
until you call RegisterXWMenu again with registering set to false,
your window will receive a MenuEvent each time the user selects an item
&om that menu.

on ReturnEventResult theResult

If you use Compilelt/'s built-in event management, you have no need for
this routine. However, if you wanted to roll your own, this handler takes a
HyperCard string, detaches it &om Compileltl, and stores it into the
EventResult field of the eventlnfoPtr.

on ReturnToPas zeroStr,str

...

Copies characters &om memory starting at the address in zeroStr to the
P-string variable str, stopping at the first return or null, or when 255
characters have been copied. Note that zerostr is a pointer, not a handle
or string .

on RunHandler handler

If handler contains a regular message handler beginning with on then
temporarily insert that handler in &ont of the current card in the message
hierarchy and run it, otherwise execute whatever sequence of commands
is in the string as if they were typed into the message box.

177

178

on SaveXWScript scriptText

This stores the HyperCard string script Text back in the stack as the
script for the object attached to this script editing window. If you have a
handle instead of a string, you can use ZeroTermHandle or
HyperCardText to convert it. Scripts are limited to 32K.

on ScanToReturn scanPtr

Starting at the address in variable scanPtr, look for a null or return
character, and set scanPtr to the address of the null or just past the
return.

on ScanToZero scanPtr

Starting at the address in variable scanPtr, look for a null and set
scanPtr to its address.

on SendCardMessage thernsg

Send the P-string thernsg to the current card.

on SendHCEvent Eventrecord

If you are calling GetNextEvent or WaitNextEvent yourself, you must
use SendHCEvent to pass to HyperCard any update events that are not for
your window, and all app4evts.

on SendHCMessage rnsg

Send the P-string rnsg directly to HyperCard.

on SendWindowMessage windPtr,windowNarne,thernsg

This is the same as writing send thernsg to window windowNarne in
HyperTalk, except that if you give it a window pointer in windPtr
instead of nil, the name is ignored.

on SetCheckPoints checkLines

A script editor uses this callback to set the checkpoints on the script in its
window. The handle checkLines is a 32-byte structure with 16
integerTypes, one for each checkpoint.

on SetFieldByID cardFld,fldID,fldVal

If cardFld is true, then replace the contents of the card field with ID
fldID by the HyperCard string naval; if false then replace the contents
of the corresponding background field instead.

on SetFieldByName cardFld,fldName,fldVal

If cardFld is true, then replace the contents of the card field with name
fldName by the HyperCard string naval; if false then replace the
contents of the corresponding background field instead.

on SetFieldByNum cardFld,fldNum,fldVal

If cardFld is true, then replace the contents of card field number fldNum

by the HyperCard string naval; if false then replace the contents of the
corresponding background field instead.

on SetFieldTE cardFld,fldID,fldNum,fldName,fieldTE

Set the text and styles of the designated card or background field to match
the text and styles in the TEhandle fieldTE (see GetFieldTE for rules
for deciding which field). You must dispose the fieldTE handle your
self.

on SetGlobal globName,globValue

Set the value of the HyperCard global variable globName to the string
globValue.

on SetObjectScript XTAlkObjectPtr,scriptHndl

Tilis command replaces the script of the object that has its data defined by
XTAlkObj ectPtr with the script in the zero-terminated handle
scriptHndl.

on SetVarValue handlerNum,varNum,varValue

Tilis callback replaces the contents of the specified variable with the string
in varValue.

on SetXWidleTime windowPtr,ticks

If your external window needs periodic execution time, you can call
SetXWidleTime and specify how often in the ticks parameter. Thereaf
ter you will get nullEvents when HyperCard is idle (even in the back
ground), until you call it again with zero ticks.

179

180

function ShowHCAlert(dlgID,prornptStr) -- integer result

on

lhis function calls up one of the four standard HyperCard alert dialogs,
identified by the number 1, 2, 3, or 4 in dlgID. The function result is
which button the user clicked. If you use the ToolBox call ParamText,

you can also use the wildcard strings "AO", "Al", "A2", "A3" in your
prompt string. Here are the choices (button 1 is always default):

dlgID dlgID name constantButtons

1 errorDlgid l:OK

2 confirmDlgid 1: OK, 2: Cancel

3 confirmDelDlgid 1: Cancel, 2: Delete

4 yesNoCancelDlgld 1: Yes, 2: Cancel, 3: No

ShowHCPalettes

This tells HyperCard to show the palettes that were hidden by a previous
callto HideHCPalettes.

function StackNarneToNurn(stackName) integer result

lhis returns a unique internal reference number for the named stack The
reference numbers are only valid until HyperCard quits.

on StepScript stepinto

This callback enables a debugger to tell HyperCard to execute one line of
the current script. If step Into is true, then if this line of HyperTalk
sends a message that is caught by another handler, it causes that handler's
script to open.

function StringEqual(strl,str2) -- Boolean result

Compare the two P-strings, and return true if they are equal.

function StringLength(strPtr) -- integer result

Count the number of characters from the address in strPtr to the next
null. Note that strPtr is a pointer, not a handle or string.

function StringMatch(pattern,target) -- pointer result

Search the characters beginning at the address in target for a string
matching pattern, and return its address if found, or else return zero if a
null is found first.

function StrToBool(str) -- Boolean result

Return the P-string value str as a Boolean.

function StrToExt(str) -- SANE result

Return the P-string value str as a SANE extended.

function StrToLong(str) -- integer result

Return the P-string value str as an unsigned long integer. Note that
Compileltf cannot distinguish unsigned numbers from signed numbers.
Add, subtract, and multiply work the same for both, but compare
and integer divide will usually give different answers for numbers larger
than 2,147,483,647 (because they look like negative numbers).

function StrToNum(str) -- integer result

Return the P-string value str as a (signed, long) integer.

on StrToPoint str,pt

Convert the P-string str to a Toolbox point and return it in the variable
pt.

on StrToRect str,rct

Convert the P-string str to a Toolbox rectangle and return it in the
variable rct. Note that Compileltf does not allow local variables of type
Rect, so you must either use a shared variable of type Rect, or else allocate
space on the heap and pass a dereferenced pointer or handle. You can also
pass this callback the reference to a field of type Rect in a data structure
such as a GrafPort.

on TraceScript traceinto

1his callback enables a debugger to tell HyperCard to continue executing
the current script, one line at a time.

181

182

on XWAllowReEntrancy windowPtr,allowSysEvts,allowHCEvts

The externals produced by Compileltf have always been completely re
entrant, that is, it is safe for a text callback to result in a second event (or
another normal call) being sent to your external before you return from
the first. Other language compilers (most notably C} store information in
their own code resource in an unsafe way, so they are accommodated by
HyperCard (which has no idea which compiler was used). Debuglt! also
stores some important information in its resource, but it makes a note of
that in the global variable HyperDebuglt, so you need not worry. If your
external will be making text callbacks (or directly calling other XCMDs
that might make text callbacks), then you probably want to call
XWAllowReEntrancy during your response to an OpenEvent, with both
allowSysEvts and allowHCEvts set to true. Otherwise you could lose
events. If you are using INLINEs to store data in the code of your com
piled external, you may want to think twice about it.

on XWAlwaysMoveHigh windowPtr,rnoveHigh

Moving handles around in memory takes time, and HyperCard will not
normally bother to do this if it is not necessary. However, if your external
requires large blocks of space in the heap, it may be desirable to have
HyperCard move your external off to one side before locking it down and
calling you. XWAlwaysMoveHigh does that. There is no particular reason
why a Compileltf XCMD should require this service - unless of course
you are working with very large data handles. You should try to turn this
feature off again by calling XWAlwaysMoveHigh with rnoveHigh set to
false as soon as you no longer need it.

on XWHasinterruptCode windowPtr,lockMe

If your external window has some code running on a VBL interrupt, then
you cannot have HyperCard moving your code resource around in
memory while you are not looking. Use this callback to let HyperCard
know that is the case. Note that this applies only to the time between calls
to your external; it is always locked while you are running. Therefore you
do not need to use this callback at all if you are passing procPtrs to the
Toolbox only when you get an event (use an INLINE to calculate the
address of your filter function or userltem each time you get an event
from HyperCard, rather than saving and re-using the same pointers).
HyperCard gets very disagreeable if you leave too many handles locked
for too long (see the section on Safe Pointers). Note also that you should

not assume that your external has been locked until the next event after
you call XWHasinterruptCode, since HyperCard will likely try to move
you to an out-of-the-way location before locking your handle. Be sure to
call XWHasinterruptCode again with lockMe set to false when you no
longer need to remain locked.

function ZeroTermHandle(hndl) -- HyperCard string result

Insert a terminating null at the end of the handle hndl, and return it as a
HyperCard string. Use Compilelt!'s HyperCardText function if the
handle already has a null. Use the HyperCardOwns command on the
resulting string if you don't want Compileltf to take ownership of it.

on ZeroToPas zeroStr,pasStr

Copies characters from memory starting at the address in zeroStr to the
P-string variable pasStr, stopping at the first null, or when 255 characters
have been copied. Note that zeroStr is a pointer, not a handle or string.

on ZeroBytes dstPtr,longCount

Sets longcount bytes in memory to zero, beginning at the address in
dstPtr.

External Window Events

There are three kinds of events that HyperCard sends to external windows
and Compileltf manages for you. The first group is designed to initialize and
support the debugging tools that HyperCard has delegated to externals. The
externals that are of the Script Editor /Debugger variety are opened with a
script and a pointer to the descriptor record for the object. A pointer to a P
string with a suggested window name is also supplied. These editors are very
closely coupled, and it would be difficult to implement an editor that is much
different from HyperCard's. Six more events are used to communicate special
information to these windoids.

The remaining events are much more generic and can be sent to any external
window. Some of these events are queries or otherwise are required to return
some reply to HyperCard; Compileltf defines these as HyperTalk functions,
and the reply is simply the result returned by the function. The events that
require no reply can either originate within HyperCard as a consequence of
some other event, or can be passed directly from the operating system events
caught by HyperCard's own event loop. There appears to be no particular
advantage to distinguishing them by source this way.

183

184

Except for the debugging utility initialization events, all come with a param
eter which is the pointer to HyperCard's XWEventlnfoPtr block. The two
events dealing with xWindoid properties also come with a pointer to the P
string name of the property, and in the case of setting the property, a value
string to set it to. Most of the time you do not need any access at all to the
XWEventlnfoPtr block, but is is available just the same. One of the fields in
this data structure is the windowPtr for your window (events are only sent to
externals with windows); Compileltl automatically does a Set Port on this
window before calling your event handler, so you can easily recover the
windowPtr by calling Get Port.

There is an extended example in the Examples card that shows how some of
these window events can be managed correctly.

on InitializeMessageWatcher

on InitializeVariableWatcher

on InitializeScriptEditor theScript,windowNarnePtr,TalkObjectPtr

on InitializeDebugger theScript,windowNarnePtr,TalkObjectPtr

These four events serve to initialize their respective debugging windoids.
Note that the Claris Script Language Guide warns against the script
editors not being re-entrant. Fortunately this is a relatively difficult
mistake to make in Compileltl

on ShowWatchinfoEvent eventinfoPtr

on ScriptErrorEvent eventinfoPtr

on DebugErrorEvent eventinfoPtr

on DebugStepEvent eventinfoPtr

on DebugTraceEvent eventinf oPtr

on DebugFinishedEvent eventinfoPtr

These six events serve to communicate particular information to their
respective debugging windoids.

on OpenEvent eventinfoPtr

This is the first event sent to an external window after the XCMD that
created it completes execution. You should use this opportunity to create
any data structures, show your window, etc.

on idleEvent eventinfoPtr

Your window will get idle events only if you have called setXWidleTirne

with a non-zero time in ticks.

on keyDownEvent eventinfoPtr

on autoKeyEvent eventinfoPtr

Your window will get keyDown and autoKey events only if you have
called BeginXWEdi t and not yetreceived a Gi veUpEdi tEvent.

on rnouseDownEvent eventinfoPtr

on updateEvent eventinfoPtr

on activateEvent eventinfoPtr

on app4Event eventinfoPtr

These four events are the same as the corresponding Toolbox events in
Inside Macintosh. Apple recommends that windoids in the floating layer
hide themselves when sent a Suspend event, and show themselves on
Resume. A copy of the Toolbox event record can be reached using the
expression, eventinfoPtr@. event. what (or
eventinfoPtr@. event. where, etc.).

on EditEvent eventinfoPtr

The five standard items under the Edit menu are collected together into
this one event, more for Compileltl's convenience than yours. You can
determine which event it was by testing,

if eventinfoPtr@.what=xEditUndo then -- do Undo event

else if eventinfoPtr@.what=xEditCut then -- do Cut event

and so on. Or you can calculate eventinfoPtr@. what-xEditUndo,

which will give you the values, O=Undo, 2=Cut, 3=Copy, 4=Paste,
5=Clear, corresponding to the positions of these items in the Edit menu
(less 1), or the values used when you call systernEdit from an applica
tion event loop (see Inside Macintosh, 1-441). Your window will only get
Edit events if you have called BeginXWEdi t and not yet received a
GiveUpEditEvent.

on GiveUpEditEvent eventinfoPtr

If your window called BeginXWEdi t, this event lets you know that you
are losing it. Unlike Gi veUpSoundEvent, you have no choice in the matter.

185

186

on HidePalettesEvent eventinfoPtr
on ShowPalettesEvent eventinfoPtr

When another XCMD uses the HideHCPalettes or ShowHCPalettes

callback, the corresponding event is sent to all windows in the floating
layer.

on SendEvent eventinfoPtr

You will get this event if a handler script or another external window is
sending your window a message. The text of the message (generally, its
name) is in

eventinfoPtr@.eventParams.ptrtype@.Str255type.

on MenuEvent eventinfoPtr

Your window will get this event only if you called RegisterXWMenu with
registering set to true. When you get it,
eventinfoPtr@. event Par ams. LongintType [1 J contains the menuID of
the selected menu, and eventinfoPtr@. eventParams. LongintType [2 J
contains the selected item number. You get the same event whether the
menu item was selected by pulling it down with the mouse, or by typing
its commandKey equivalent.

on MBarClickedEvent eventinfoPtr

If you have registered one or more menus using the RegisterXWMenu

callback, then you will get this event whenever the user clicks on the
menuBar, before any menus are dropped down. This allows your external
to adjust the menu items of your menus if necessary before the user sees
them.

function CloseEvent eventinfoPtr -- return true if closing

This is normally the last event sent to a window before it is closed and its
window disposed - unless the window refuses to close. It is a function so
that if you wish to put up a dialog including a Cancel button, your
window will stay open. Normally you would use this event to dispose all
your private data structures (but not the window itself!), then return true
to signal that it's OK to close your window. If the user tries to Quit
HyperCard and your window returns false to the Close event, HyperCard
will be unable to quit. Do not dispose of your data structures until you

receive the Close event: if you have unprocessed or incompletely pro
cessed messages pending, their handlers might become confused if the
data is already gone. If you do not include a CloseEvent handler in your
script, Compileltl will supply a default handler that returns true.

function GiveUpSoundEvent eventinfoPtr -- return true if ok

1his event signals HyperCard's request that you give up the sound
channel. You should return true if you are willing to do so, and have
terminated all your Sound Manager calls. If you return false, then Hyper
Card will be unable to make the sounds requested by the script or release
the sound channel to another xWindoid as requested. Remember, the
other xWindoid that wants the sound channel might be another instance
of your own XCMD. If you do not include a Gi veUpSoundEvent handler
in your script, Compileltl will supply a default handler that returns true,
but you really should have a handler for this event if you called
BeginXSound, and you wouldn't even get the event if you did not make
that callback.

function CursorWithinEvent eventinfoPtr

This event is something like the mouseWithin message sent to a button or
field in HyperCard, except that it is assumed that you might want to set
the cursor to reflect what the mouse is pointing to. If you return true, then
HyperCard will set the cursor to a default arrow. Return false if you are
setting the cursor, and HyperCard won't touch it while it is over the
content region of your window. If you do not include a
CursorWithinEvent handler in your script, Compileltl will supply a
default handler that returns true.

function SetPropEvent eventinfoPtr,propNamePtr,propertyValue

function GetPropEvent eventinfoPtr,propNamePtr -- return value or exit

These two events allow your window to service its properties. The
propNamePtr for both of these events is a pointer to a P-string with the
name of the property to be processed. The property value in each case is a
zero-terminated HyperCard string.

An external window may have as many properties as it cares to manage.
HyperCard will manage two default properties for any window: loc and
visible. Any other property that the external declines to service will
result in an error dialog. If the window handler chooses to service a
SetPropEvent, it should return false when it has accepted it; if it returns
true then HyperCard will apply its default handler. Similarly, the external

187

188

window can manage its own replies to the GetPropEvent by returning the
value of the requested property. Since empty and "false" and "true" are
all valid property values, Compileltf recognizes that you want to let
HyperCard apply its default handler when you exit this handler without
returning any value at all - not even empty, just exit GetPropEvent or
fall through to the end GetPropEvent line without executing any return
command. If you do not include a SetPropEvent handler in your script,
Compileltl will supply a default handler that returns true, and if you do
not include a GetPropEvent handler in your script, Compilelt/ will supply
a default handler that just exits.

HyperCard Data Structures for Externals

The XWEventlnfoPtr passed as a parameter with most external window
events has the following four fields (shown using the syntax for shared
variable data types, even though these are of course not the same as shared
variables):

event:Record[16] -- a standard event record from Inside Macintosh I-249

eventWindow:Pointer -- a standard windowPtr from Inside Macintosh I-276

eventParams:Record[40] -- an array of ten Longints

eventResult:Pointer -- the requested property value handle from GetPropEvent

Script editing externals need access to the internal object descriptor, which has
this format:

objectKind:Integer -- l=stack, 2=bkgnd,)=card, 4=field, 5=button

stackNum:Longint -- reference number of the source stack

bkgndID:Longint -- the bkgnd of the card (if any) of the ...

cardID:Longint -- the card where this button or field (if any) resides

buttonID:Longint -- buttonID is its real ID, bkgndID = NIL for card objects

fieldID:Longint -- fieldID is its real ID, bkgndID = NIL for card objects

The XcmdBlock is passed by a pointer to the external for all calls, including
external window events. Note that Compilelt! manages this block for you. Its
format:

paramCount:Integer -- negative if an event

params:Record[64] -- an array of 16 Longints or pointers;

-- for events, params.ptrtype[l] contains the XWEventinfoPtr

returnValue:Pointer -- really a zero-terminated handle, filled when

-- you return

passFlag:Boolean -- true when you pass handlername

entryPoint:Pointer -- callbacks jump to this address

request:Integer -- the callback request number (shown in the

--Callback Review dialog)

resultX:Integer -- O=OK, l=failed, 2=not implemented, usually in

-- "the result"

inArgs:Record[32]

-- for callbacks

an array of B Longints or pointers or handles,

outArgs:Record[l6] -- an array of 4 Longints or pointers or handles

189

190

Symbols

$ 42, 53
@ 75, 79, 85, 93
(. ..) 79

A

Add All button 58
AddResource 96
Address 79
Always Install in Stack... 22
Always Use SANE 25
America Online 57
Analysis 45
Analysls button 36, 53
Analysis card 46, 52, 53

INDEX

Array notation 74, 78, 87, 89, 98, 101
Assembly language 11

B

Batch compile 22
Binary callbacks 32. 35, 46, 66, 71
BitMap 30, 89
Bkpt 46
BlockMove 94
Boolean 28, 70, 89
Breakpoint 46, 49, 91

c
Callbacks 34, 51 , 62
Char 89
Character strings 77, 94
Characters 82
CharsHandle function 60, 75. 78, 82, 93, 96
Chunk expression 76, 86, 91
Clear Marks button 60
CloseDialog l 09
CloseEvent l 07

191

192

Close Window 109
CloseXWlndow 109
Cir Bkpts button 49
Command button 50
Command-period 49, 51
Compilation phase 21
Compile It button 18
Compiler 11
CompuServe 57
Coordinates 71
Copy & Rename button 65, 73
Custom Symbol Edit card 59, 63, 73, 87

D
Data type 27, 47, 70, 100
Debugltl 19, 42, 90
Debugltl checkbox 42
Debugltl option 42
Demo 17
Dereference operator 75, 85, 87, 93
Desk accessories 22
Desk Accessory names 29
DetachResource 96
Diamond marker 47, 60
DisposDlalog 109
Dispose Window 109
Disposptr 80, 88
Dollar sign 53
Dot 30, 86
Duplicate symbols 73

E

Edit Hex button 47
Edit Marked 66
EditEvent 107
EntryPoint 110
Error detection 42
EvalExpr 43
Event record 86
EventAvall 86
Eventlnfo parameter block 108

eventParams array l 09
EventRecord 89
EventResult 110
Exit to HyperCard 19
External commands 12
External windows 96, 105
ExtToStr 110

F

"Fast" mode 43
Field 37
Fields 26. 71. 86
Fixed 89
Floating point 25, 66
FrontDocWindow 52
FrontWindow 52
Functions 41

G

GetFieldByName 110
GetFleldByNum 11 O
GetFleldTE 111
GetGlobal 114
GetNewXWindow l 09
GetNextEvent 87
GetPropEvent l 07
GetptrSize 89
GetResource 96
GetXCmdptr 115
Glo/Fld 46
Global variables 38
GrafPort 89

H

HandAndHand 86
Handle 41. 47, 60, 75. 77, 79. 81. 82, 85, 89. 90
Handle Chunks 82. 84, 98
HandToHand 96
heap 79
help 16
HiWord 39

193

194

HLock 85
Host application 43
Hour hand 21
HUnlock 85
HyperCard l .x XCMD interface 43, 50, 52
HyperCard 2 checkbox 19, 49
HyperCard 2.0 12, 44, 46, 62, 71, 105
HyperCard 2.0 Extended XCMD Interface l 05
HyperCard string 29
HyperCardOwns 96, 111
HyperCardText 96, 112
HyperDebuglt 43
HyperTalk names 60

Incremental compiler 12
lnline jump 64
Inside Macintosh 30, 40, 59, 69, 86-87, 89
Integer 28, 71, 82, 89
Integer arithmetic 25
lntegerType 73
It 30, 47, 48
ltemDel property 49
ltemDellm property 49
ltemDelimiter property 49

L

Library Code 32, 33
Licensing 53
Long Integer 71
Longlnteger 47
Longlnts 82, 89
LonglntType 73
Low-Memory Global 70, 84
LoWord 39

M

MacsBug 52
Mark Only Dupes button 60
Marked Used Names 59
Master pointer 81, 85

MemErr 84
Memory 79
Minute hand 21
Motorola MC68000 11
MouseUp 14
Munger 94, 98

N

Native lnline Code 32
New Name ... button 63
NewHandle 96, 101
NewPtr 80, 87, 101
NewXWindow 109
Non-existent chunk 82
Non-printable string characters 47
Non-printing control character 49
Null characters 29, 95
NumCvt 46

0

OpenEvent 107
Optional parameters 65
Options card 22, 43
OSType 73, 89
Other Options ... button 57

p

P-strlngs 29, 99, 101
Palette 106
Paramcount 65
ParamCountX 112
Parameters 13, 18, 69, 96
ParamPtr 109
Parentheses 41
Paste from Clipboard button 17
PasToZero 113
Pattern 89
Point 71. 88, 89
Pointer 41, 47, 75, 77, 79, 81, 82, 85
Pointer arithmetic 85, 87, 98, 102
Pointer chunks 83

195

196

PrintTEHandle 113
Procedures 41
Programming errors 42
Progress 20
Pseudo fields 7 4, 88
Ptr 89

R

Random function 60
Record 29, 47, 101
Record field notation 86
Record structure 71
Rect 72, 89
Rectangle 72
reentrancy l 05
RefCon 112
Refresh 43
Refresh button 50
Remove All button 58
Remove Marked button 60
Reserved handler names l 05
Resize 51
Resource Manager 96
ResultX 113
Resume button 49
ReturnToPas 113
returnValue 113
Review Binary Callbacks 51
Review Text Callbacks 51
ROM Toolbox routines 29
ROM/Libe 46, 86
runtime fees 53

s
SANE 25, 28, 89
SaneType 73
Scan T oZero 113
Script card 43
Script card 20
Send Msg 50
SendCardMessage 43

SendHCmessage 43
SetFleldBylD 110
SetFleldByName 110
SetFieldByNum 110
SetFieldTE 111
SetGlobal 114
SetHandleSize 86, 95
SetPropEvent l 07
SetptrSize 81 , 89
SFGetFile l 02
Shared variable 72
SignedByte 89
Size of Debugltl 52
Small stack icon 22
Source level debugger 42
standard Apple Numeric Environment 19, 25, 28, 89
step button 49
Stop Sign 49, 51
STR# 99
str255Type 73
String 29
String compares 76
string handling 75
stringEqual 114
Stringlength 114
stringMatch 114
Strings 66
StrToBool 114
StrT oExt 114
StrTolong 115
StrToNum 115
SuperCard 57, 62, 65
Switch windows 51
Symbol Manager 58
Symbol table 57
System globals 80

T

Text callbacks 32, 46. 54, 66
the result 48
Ticks 62

197

198

TMON 52
Toolbox 40, 69, 75
Toolbox Function 70
Toolbox Global 70, 84
Toolbox procedure 69
Trace 49
TxtCbk 46

u
UpdateEvent 107
Updater stacks 59

v
Value button 50
Value function 62
VAR 70
Variable monitor 47

w
WaitNextEvent 87
Watch cursor 21
Within 36

x
XCMD 12
XCmdPfr 115
XFCN 12
xWlndoids 105

z
ZeroToPas 115

199

